mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00

* Start processing images. * Add LayerNorm2d. * Properly use LayerNorm2d. * Tweak eps. * Use LayerNorm on inputs with a rank different from 3. * Window partitioning. * Fix a couple todos. * More todos. * Hard-code the einsums. * More padding support. * Some sizes tweaks. * Use the hub to get the weights. * Use a batch matmul. * Tweaks. * More fixes. * Get some predictions to be generated.
215 lines
8.0 KiB
Rust
215 lines
8.0 KiB
Rust
use candle::{DType, IndexOp, Result, Tensor, D};
|
|
use candle_nn::{Linear, Module, VarBuilder};
|
|
|
|
#[derive(Debug)]
|
|
struct PostionEmbeddingRandom {
|
|
positional_encoding_gaussian_matrix: Tensor,
|
|
}
|
|
|
|
impl PostionEmbeddingRandom {
|
|
fn new(num_pos_feats: usize, vb: VarBuilder) -> Result<Self> {
|
|
let positional_encoding_gaussian_matrix =
|
|
vb.get((2, num_pos_feats), "positional_encoding_gaussian_matrix")?;
|
|
Ok(Self {
|
|
positional_encoding_gaussian_matrix,
|
|
})
|
|
}
|
|
|
|
fn pe_encoding(&self, coords: &Tensor) -> Result<Tensor> {
|
|
let coords = coords.affine(2., -1.)?;
|
|
let coords = coords.broadcast_matmul(&self.positional_encoding_gaussian_matrix)?;
|
|
let coords = (coords * (2. * std::f64::consts::PI))?;
|
|
Tensor::cat(&[coords.sin()?, coords.cos()?], D::Minus1)
|
|
}
|
|
|
|
fn forward(&self, h: usize, w: usize) -> Result<Tensor> {
|
|
let device = self.positional_encoding_gaussian_matrix.device();
|
|
let grid = Tensor::ones((h, w), DType::F32, device)?;
|
|
let x_embed = (Tensor::arange(0u32, w as u32, device)?.to_dtype(DType::F32)? + 0.5)?;
|
|
let y_embed = (Tensor::arange(0u32, h as u32, device)?.to_dtype(DType::F32)? + 0.5)?;
|
|
let x_embed = (x_embed / w as f64)?
|
|
.reshape((1, w))?
|
|
.broadcast_as((h, w))?;
|
|
let y_embed = (y_embed / h as f64)?
|
|
.reshape((h, 1))?
|
|
.broadcast_as((h, w))?;
|
|
let coords = Tensor::stack(&[&x_embed, &y_embed], D::Minus1)?;
|
|
self.pe_encoding(&coords)?.permute((2, 0, 1))
|
|
}
|
|
|
|
fn forward_with_coords(
|
|
&self,
|
|
coords_input: &Tensor,
|
|
image_size: (usize, usize),
|
|
) -> Result<Tensor> {
|
|
let coords0 = (coords_input.narrow(D::Minus1, 0, 1)? / image_size.1 as f64)?;
|
|
let coords1 = (coords_input.narrow(D::Minus1, 1, 1)? / image_size.0 as f64)?;
|
|
let c = coords_input.dim(D::Minus1)?;
|
|
let coords_rest = coords_input.narrow(D::Minus1, 2, c - 2)?;
|
|
let coords = Tensor::cat(&[&coords0, &coords1, &coords_rest], D::Minus1)?;
|
|
self.pe_encoding(&coords)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub struct PromptEncoder {
|
|
pe_layer: PostionEmbeddingRandom,
|
|
point_embeddings: Vec<candle_nn::Embedding>,
|
|
not_a_point_embed: candle_nn::Embedding,
|
|
mask_downscaling_conv1: candle_nn::Conv2d,
|
|
mask_downscaling_ln1: crate::LayerNorm2d,
|
|
mask_downscaling_conv2: candle_nn::Conv2d,
|
|
mask_downscaling_ln2: crate::LayerNorm2d,
|
|
mask_downscaling_conv3: candle_nn::Conv2d,
|
|
no_mask_embed: candle_nn::Embedding,
|
|
image_embedding_size: (usize, usize),
|
|
input_image_size: (usize, usize),
|
|
embed_dim: usize,
|
|
}
|
|
|
|
impl PromptEncoder {
|
|
pub fn new(
|
|
embed_dim: usize,
|
|
image_embedding_size: (usize, usize),
|
|
input_image_size: (usize, usize),
|
|
mask_in_chans: usize,
|
|
vb: VarBuilder,
|
|
) -> Result<Self> {
|
|
let num_points_embeddings = 4;
|
|
let pe_layer = PostionEmbeddingRandom::new(embed_dim / 2, vb.pp("pe_layer"))?;
|
|
let not_a_point_embed = candle_nn::embedding(1, embed_dim, vb.pp("not_a_point_embed"))?;
|
|
let no_mask_embed = candle_nn::embedding(1, embed_dim, vb.pp("no_mask_embed"))?;
|
|
let cfg = candle_nn::Conv2dConfig {
|
|
stride: 2,
|
|
..Default::default()
|
|
};
|
|
let mask_downscaling_conv1 =
|
|
candle_nn::conv2d(1, mask_in_chans / 4, 2, cfg, vb.pp("mask_downscaling.0"))?;
|
|
let mask_downscaling_conv2 = candle_nn::conv2d(
|
|
mask_in_chans / 4,
|
|
mask_in_chans,
|
|
2,
|
|
cfg,
|
|
vb.pp("mask_downscaling.3"),
|
|
)?;
|
|
let mask_downscaling_conv3 = candle_nn::conv2d(
|
|
mask_in_chans,
|
|
embed_dim,
|
|
1,
|
|
Default::default(),
|
|
vb.pp("mask_downscaling.6"),
|
|
)?;
|
|
let mask_downscaling_ln1 =
|
|
crate::LayerNorm2d::new(mask_in_chans / 4, 1e-6, vb.pp("mask_downscaling.1"))?;
|
|
let mask_downscaling_ln2 =
|
|
crate::LayerNorm2d::new(mask_in_chans, 1e-6, vb.pp("mask_downscaling.4"))?;
|
|
let mut point_embeddings = Vec::with_capacity(num_points_embeddings);
|
|
let vb_e = vb.pp("point_embeddings");
|
|
for i in 0..num_points_embeddings {
|
|
let emb = candle_nn::embedding(1, embed_dim, vb_e.pp(i))?;
|
|
point_embeddings.push(emb)
|
|
}
|
|
Ok(Self {
|
|
pe_layer,
|
|
point_embeddings,
|
|
not_a_point_embed,
|
|
mask_downscaling_conv1,
|
|
mask_downscaling_ln1,
|
|
mask_downscaling_conv2,
|
|
mask_downscaling_ln2,
|
|
mask_downscaling_conv3,
|
|
no_mask_embed,
|
|
image_embedding_size,
|
|
input_image_size,
|
|
embed_dim,
|
|
})
|
|
}
|
|
|
|
pub fn get_dense_pe(&self) -> Result<Tensor> {
|
|
self.pe_layer
|
|
.forward(self.image_embedding_size.0, self.image_embedding_size.1)?
|
|
.unsqueeze(0)
|
|
}
|
|
|
|
fn embed_masks(&self, masks: &Tensor) -> Result<Tensor> {
|
|
masks
|
|
.apply(&self.mask_downscaling_conv1)?
|
|
.apply(&self.mask_downscaling_ln1)?
|
|
.gelu()?
|
|
.apply(&self.mask_downscaling_conv2)?
|
|
.apply(&self.mask_downscaling_ln2)?
|
|
.gelu()?
|
|
.apply(&self.mask_downscaling_conv3)
|
|
}
|
|
|
|
fn embed_points(&self, points: &Tensor, labels: &Tensor, pad: bool) -> Result<Tensor> {
|
|
let points = (points + 0.5)?;
|
|
let dev = points.device();
|
|
let (points, labels) = if pad {
|
|
let padding_point = Tensor::zeros((points.dim(0)?, 1, 2), DType::F32, dev)?;
|
|
let padding_label = (Tensor::ones((labels.dim(0)?, 1), DType::F32, dev)? * (-1f64))?;
|
|
let points = Tensor::cat(&[&points, &padding_point], 1)?;
|
|
let labels = Tensor::cat(&[labels, &padding_label], 1)?;
|
|
(points, labels)
|
|
} else {
|
|
(points, labels.clone())
|
|
};
|
|
let point_embedding = self
|
|
.pe_layer
|
|
.forward_with_coords(&points, self.input_image_size)?;
|
|
// TODO: tweak based on labels.
|
|
Ok(point_embedding)
|
|
}
|
|
|
|
fn embed_boxes(&self, boxes: &Tensor) -> Result<Tensor> {
|
|
let boxes = (boxes + 0.5)?;
|
|
let coords = boxes.reshape((boxes.elem_count() / 4, 2, 2))?;
|
|
let corner_embedding = self
|
|
.pe_layer
|
|
.forward_with_coords(&coords, self.input_image_size)?;
|
|
let ce1 = corner_embedding.i((.., 0))?;
|
|
let ce2 = corner_embedding.i((.., 1))?;
|
|
let ce1 = (ce1 + self.point_embeddings[2].embeddings())?;
|
|
let ce2 = (ce2 + self.point_embeddings[3].embeddings())?;
|
|
Tensor::cat(&[&ce1, &ce2], 1)
|
|
}
|
|
|
|
pub fn forward(
|
|
&self,
|
|
points: Option<(&Tensor, &Tensor)>,
|
|
boxes: Option<&Tensor>,
|
|
masks: Option<&Tensor>,
|
|
) -> Result<(Tensor, Tensor)> {
|
|
let se_points = match points {
|
|
Some((coords, labels)) => Some(self.embed_points(coords, labels, boxes.is_none())?),
|
|
None => None,
|
|
};
|
|
let se_boxes = match boxes {
|
|
Some(boxes) => Some(self.embed_boxes(boxes)?),
|
|
None => None,
|
|
};
|
|
let sparse_embeddings = match (se_points, se_boxes) {
|
|
(Some(se_points), Some(se_boxes)) => Tensor::cat(&[se_points, se_boxes], 1)?,
|
|
(Some(se_points), None) => se_points,
|
|
(None, Some(se_boxes)) => se_boxes,
|
|
(None, None) => {
|
|
Tensor::zeros((1, 0, self.embed_dim), DType::F32, &candle::Device::Cpu)?
|
|
}
|
|
};
|
|
|
|
let dense_embeddings = match masks {
|
|
None => {
|
|
let emb = self.no_mask_embed.embeddings();
|
|
emb.reshape((1, emb.elem_count(), 1, 1))?.expand((
|
|
1,
|
|
emb.elem_count(),
|
|
self.image_embedding_size.0,
|
|
self.image_embedding_size.1,
|
|
))?
|
|
}
|
|
Some(masks) => self.embed_masks(masks)?,
|
|
};
|
|
Ok((sparse_embeddings, dense_embeddings))
|
|
}
|
|
}
|