mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00
200 lines
5.9 KiB
Rust
200 lines
5.9 KiB
Rust
//! Batch Normalization.
|
|
//!
|
|
//! This layer applies Batch Normalization over a mini-batch of inputs as described in [`Batch
|
|
//! Normalization`]. The input is expected to have at least three dimensions.
|
|
//!
|
|
//! Note that this implementation is for inference only, there is no possibility to track the
|
|
//! running stats.
|
|
//!
|
|
//! [`Batch Normalization`]: https://arxiv.org/abs/1502.03167
|
|
use candle::{DType, Result, Tensor};
|
|
|
|
#[derive(Debug, Clone, Copy, PartialEq)]
|
|
pub struct BatchNormConfig {
|
|
pub eps: f64,
|
|
pub remove_mean: bool,
|
|
/// The meaning of affine here is different from LayerNorm: when false there is no learnable
|
|
/// parameter at all, 1 used for gamma and 0 for beta.
|
|
pub affine: bool,
|
|
}
|
|
|
|
impl Default for BatchNormConfig {
|
|
fn default() -> Self {
|
|
Self {
|
|
eps: 1e-5,
|
|
remove_mean: true,
|
|
affine: true,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<f64> for BatchNormConfig {
|
|
fn from(eps: f64) -> Self {
|
|
Self {
|
|
eps,
|
|
remove_mean: true,
|
|
affine: true,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub struct BatchNorm {
|
|
running_mean: Tensor,
|
|
running_var: Tensor,
|
|
weight_and_bias: Option<(Tensor, Tensor)>,
|
|
remove_mean: bool,
|
|
eps: f64,
|
|
num_features: usize,
|
|
}
|
|
|
|
impl BatchNorm {
|
|
pub fn new(
|
|
num_features: usize,
|
|
running_mean: Tensor,
|
|
running_var: Tensor,
|
|
weight: Tensor,
|
|
bias: Tensor,
|
|
eps: f64,
|
|
) -> Result<Self> {
|
|
if eps < 0. {
|
|
candle::bail!("batch-norm eps cannot be negative {eps}")
|
|
}
|
|
if weight.dims() != [num_features] {
|
|
candle::bail!(
|
|
"batch-norm unexpected weight shape {:?} {num_features}",
|
|
weight.shape()
|
|
)
|
|
}
|
|
if bias.dims() != [num_features] {
|
|
candle::bail!(
|
|
"batch-norm unexpected bias shape {:?} {num_features}",
|
|
bias.shape()
|
|
)
|
|
}
|
|
Ok(Self {
|
|
running_mean,
|
|
running_var,
|
|
weight_and_bias: Some((weight, bias)),
|
|
remove_mean: true,
|
|
eps,
|
|
num_features,
|
|
})
|
|
}
|
|
|
|
pub fn new_no_bias(
|
|
num_features: usize,
|
|
running_mean: Tensor,
|
|
running_var: Tensor,
|
|
eps: f64,
|
|
) -> Result<Self> {
|
|
if eps < 0. {
|
|
candle::bail!("batch-norm eps cannot be negative {eps}")
|
|
}
|
|
Ok(Self {
|
|
running_mean,
|
|
running_var,
|
|
weight_and_bias: None,
|
|
remove_mean: true,
|
|
eps,
|
|
num_features,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl BatchNorm {
|
|
pub fn forward_learning(&self, x: &Tensor) -> Result<Tensor> {
|
|
let x_dtype = x.dtype();
|
|
let internal_dtype = match x_dtype {
|
|
DType::F16 | DType::BF16 => DType::F32,
|
|
d => d,
|
|
};
|
|
if x.rank() < 2 {
|
|
candle::bail!(
|
|
"batch-norm input tensor must have at least two dimensions ({:?})",
|
|
x.shape()
|
|
)
|
|
}
|
|
if x.dim(1)? != self.num_features {
|
|
candle::bail!(
|
|
"batch-norm input doesn't have the expected number of features ({:?} <> {})",
|
|
x.shape(),
|
|
self.num_features
|
|
)
|
|
}
|
|
let x = x.to_dtype(internal_dtype)?;
|
|
let x = x.transpose(0, 1)?;
|
|
let x_dims_post_transpose = x.dims();
|
|
let x = x.flatten_from(1)?.contiguous()?;
|
|
let x = if self.remove_mean {
|
|
let mean_x = x.mean_keepdim(1)?;
|
|
x.broadcast_sub(&mean_x)?
|
|
} else {
|
|
x
|
|
};
|
|
let norm_x = x.sqr()?.mean_keepdim(1)?;
|
|
let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?;
|
|
let x = x_normed.to_dtype(x_dtype)?;
|
|
let x = match &self.weight_and_bias {
|
|
None => x,
|
|
Some((weight, bias)) => {
|
|
let weight = weight.reshape((self.num_features, 1))?;
|
|
let bias = bias.reshape((self.num_features, 1))?;
|
|
x.broadcast_mul(&weight)?.broadcast_add(&bias)?
|
|
}
|
|
};
|
|
x.reshape(x_dims_post_transpose)?.transpose(0, 1)
|
|
}
|
|
}
|
|
|
|
impl crate::Module for BatchNorm {
|
|
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
|
let target_shape: Vec<usize> = x
|
|
.dims()
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(idx, v)| if idx == 1 { *v } else { 1 })
|
|
.collect();
|
|
let target_shape = target_shape.as_slice();
|
|
let x = x
|
|
.broadcast_sub(&self.running_mean.reshape(target_shape)?)?
|
|
.broadcast_div(&(self.running_var.reshape(target_shape)? + self.eps)?.sqrt()?)?;
|
|
match &self.weight_and_bias {
|
|
None => Ok(x),
|
|
Some((weight, bias)) => {
|
|
let weight = weight.reshape(target_shape)?;
|
|
let bias = bias.reshape(target_shape)?;
|
|
x.broadcast_mul(&weight)?.broadcast_add(&bias)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn batch_norm<C: Into<BatchNormConfig>>(
|
|
num_features: usize,
|
|
config: C,
|
|
vb: crate::VarBuilder,
|
|
) -> Result<BatchNorm> {
|
|
let config = config.into();
|
|
if config.eps < 0. {
|
|
candle::bail!("batch-norm eps cannot be negative {}", config.eps)
|
|
}
|
|
let running_mean = vb.get_with_hints(num_features, "running_mean", crate::Init::Const(0.))?;
|
|
let running_var = vb.get_with_hints(num_features, "running_var", crate::Init::Const(1.))?;
|
|
let weight_and_bias = if config.affine {
|
|
let weight = vb.get_with_hints(num_features, "weight", crate::Init::Const(1.))?;
|
|
let bias = vb.get_with_hints(num_features, "bias", crate::Init::Const(0.))?;
|
|
Some((weight, bias))
|
|
} else {
|
|
None
|
|
};
|
|
Ok(BatchNorm {
|
|
running_mean,
|
|
running_var,
|
|
weight_and_bias,
|
|
remove_mean: config.remove_mean,
|
|
eps: config.eps,
|
|
num_features,
|
|
})
|
|
}
|