mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 19:18:50 +00:00

* More segment-anything again. * Transformer block forward. * Two-ways transformer. * Position embeddings. * Sketch the prompt encoder. * More prompt-encoder. * More prompt-encoder. * Add the main sam module. * Embed the transformer. * And hook the transformer forward step. * Build the model. * Handle the global attn indexes. * Get the model to load.
271 lines
7.1 KiB
Rust
271 lines
7.1 KiB
Rust
use candle::{DType, IndexOp, Result, Tensor, D};
|
|
use candle_nn::{layer_norm, LayerNorm, Linear, Module, VarBuilder};
|
|
|
|
#[derive(Debug)]
|
|
struct PatchEmbed {
|
|
proj: candle_nn::Conv2d,
|
|
}
|
|
|
|
impl PatchEmbed {
|
|
fn new(
|
|
in_chans: usize,
|
|
embed_dim: usize,
|
|
k_size: usize,
|
|
stride: usize,
|
|
padding: usize,
|
|
vb: VarBuilder,
|
|
) -> Result<Self> {
|
|
let cfg = candle_nn::Conv2dConfig {
|
|
stride,
|
|
padding,
|
|
..Default::default()
|
|
};
|
|
let proj = candle_nn::conv2d(in_chans, embed_dim, k_size, cfg, vb.pp("proj"))?;
|
|
Ok(Self { proj })
|
|
}
|
|
}
|
|
|
|
impl Module for PatchEmbed {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
xs.apply(&self.proj)?.permute((0, 2, 3, 1))
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct Attention {
|
|
qkv: Linear,
|
|
proj: Linear,
|
|
num_heads: usize,
|
|
scale: f64,
|
|
use_rel_pos: bool,
|
|
rel_pos_hw: Option<(Tensor, Tensor)>,
|
|
}
|
|
|
|
impl Attention {
|
|
fn new(
|
|
dim: usize,
|
|
num_heads: usize,
|
|
qkv_bias: bool,
|
|
use_rel_pos: bool,
|
|
input_size: (usize, usize),
|
|
vb: VarBuilder,
|
|
) -> Result<Self> {
|
|
let qkv = crate::linear(vb.pp("qkv"), dim, dim * 3, qkv_bias)?;
|
|
let proj = crate::linear(vb.pp("proj"), dim, dim, true)?;
|
|
let head_dim = dim / num_heads;
|
|
let scale = 1. / (head_dim as f64).sqrt();
|
|
let rel_pos_hw = if use_rel_pos {
|
|
let h = vb.get((2 * input_size.0 - 1, head_dim), "rel_pos_h")?;
|
|
let w = vb.get((2 * input_size.1 - 1, head_dim), "rel_pos_w")?;
|
|
Some((h, w))
|
|
} else {
|
|
None
|
|
};
|
|
Ok(Self {
|
|
qkv,
|
|
proj,
|
|
num_heads,
|
|
scale,
|
|
use_rel_pos,
|
|
rel_pos_hw,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl Module for Attention {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
let (b, h, w, c) = xs.dims4()?;
|
|
let qkv = self
|
|
.qkv
|
|
.forward(xs)?
|
|
.reshape((b, h * w, 3, self.num_heads, c / self.num_heads))?
|
|
.permute((2, 0, 3, 1, 4))?
|
|
.reshape((3, b * self.num_heads, h * w, c / self.num_heads))?;
|
|
let q = qkv.i(0)?;
|
|
let k = qkv.i(1)?;
|
|
let v = qkv.i(2)?;
|
|
let attn = (q * self.scale)?.matmul(&k.t()?)?;
|
|
if self.use_rel_pos {
|
|
todo!()
|
|
}
|
|
let attn = candle_nn::ops::softmax_last_dim(&attn)?;
|
|
let attn = attn
|
|
.matmul(&v)?
|
|
.reshape((b, self.num_heads, h, w, c / self.num_heads))?
|
|
.permute((0, 2, 3, 1, 4))?
|
|
.reshape((b, h, w, c / self.num_heads))?;
|
|
self.proj.forward(&attn)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct Block {
|
|
norm1: LayerNorm,
|
|
attn: Attention,
|
|
norm2: LayerNorm,
|
|
mlp: crate::MlpBlock,
|
|
window_size: usize,
|
|
}
|
|
|
|
impl Block {
|
|
fn new(
|
|
dim: usize,
|
|
num_heads: usize,
|
|
qkv_bias: bool,
|
|
use_rel_pos: bool,
|
|
window_size: usize,
|
|
input_size: (usize, usize),
|
|
vb: VarBuilder,
|
|
) -> Result<Self> {
|
|
let norm1 = layer_norm(dim, 1e-5, vb.pp("norm1"))?;
|
|
let norm2 = layer_norm(dim, 1e-5, vb.pp("norm2"))?;
|
|
let input_size_attn = if window_size == 0 {
|
|
input_size
|
|
} else {
|
|
(window_size, window_size)
|
|
};
|
|
let attn = Attention::new(
|
|
dim,
|
|
num_heads,
|
|
qkv_bias,
|
|
use_rel_pos,
|
|
input_size_attn,
|
|
vb.pp("attn"),
|
|
)?;
|
|
let mlp = crate::MlpBlock::new(dim, dim * 4, vb.pp("mlp"))?;
|
|
Ok(Self {
|
|
norm1,
|
|
attn,
|
|
norm2,
|
|
mlp,
|
|
window_size,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl Module for Block {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
let shortcut = xs;
|
|
let xs = self.norm1.forward(xs)?;
|
|
if self.window_size > 0 {
|
|
todo!()
|
|
}
|
|
let xs = self.attn.forward(&xs)?;
|
|
if self.window_size > 0 {
|
|
todo!()
|
|
}
|
|
let xs = (xs + shortcut)?;
|
|
&xs + xs.apply(&self.norm2)?.apply(&self.mlp)?
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub struct ImageEncoderViT {
|
|
img_size: usize,
|
|
patch_embed: PatchEmbed,
|
|
blocks: Vec<Block>,
|
|
neck_conv1: candle_nn::Conv2d,
|
|
neck_ln1: LayerNorm,
|
|
neck_conv2: candle_nn::Conv2d,
|
|
neck_ln2: LayerNorm,
|
|
pos_embed: Option<Tensor>,
|
|
}
|
|
|
|
impl ImageEncoderViT {
|
|
#[allow(clippy::too_many_arguments)]
|
|
pub fn new(
|
|
img_size: usize,
|
|
patch_size: usize,
|
|
in_chans: usize,
|
|
embed_dim: usize,
|
|
depth: usize,
|
|
num_heads: usize,
|
|
out_chans: usize,
|
|
qkv_bias: bool,
|
|
use_rel_pos: bool,
|
|
use_abs_pos: bool,
|
|
window_size: usize,
|
|
global_attn_indexes: &[usize],
|
|
vb: VarBuilder,
|
|
) -> Result<Self> {
|
|
let patch_embed = PatchEmbed::new(
|
|
in_chans,
|
|
embed_dim,
|
|
patch_size,
|
|
patch_size,
|
|
0,
|
|
vb.pp("patch_embed"),
|
|
)?;
|
|
let mut blocks = Vec::with_capacity(depth);
|
|
let vb_b = vb.pp("blocks");
|
|
for i in 0..depth {
|
|
let window_size = if global_attn_indexes.contains(&i) {
|
|
0
|
|
} else {
|
|
window_size
|
|
};
|
|
let block = Block::new(
|
|
embed_dim,
|
|
num_heads,
|
|
qkv_bias,
|
|
use_rel_pos,
|
|
window_size,
|
|
(img_size / patch_size, img_size / patch_size),
|
|
vb_b.pp(i),
|
|
)?;
|
|
blocks.push(block)
|
|
}
|
|
let neck_conv1 = candle_nn::conv2d_no_bias(
|
|
embed_dim,
|
|
out_chans,
|
|
1,
|
|
Default::default(),
|
|
vb.pp("neck.0"),
|
|
)?;
|
|
let neck_ln1 = layer_norm(out_chans, 1e-6, vb.pp("neck.1"))?;
|
|
let cfg = candle_nn::Conv2dConfig {
|
|
padding: 1,
|
|
..Default::default()
|
|
};
|
|
let neck_conv2 = candle_nn::conv2d_no_bias(out_chans, out_chans, 3, cfg, vb.pp("neck.2"))?;
|
|
let neck_ln2 = layer_norm(out_chans, 1e-6, vb.pp("neck.3"))?;
|
|
let pos_embed = if use_abs_pos {
|
|
let p = vb.get(
|
|
(1, img_size / patch_size, img_size / patch_size, embed_dim),
|
|
"pos_embed",
|
|
)?;
|
|
Some(p)
|
|
} else {
|
|
None
|
|
};
|
|
Ok(Self {
|
|
img_size,
|
|
patch_embed,
|
|
blocks,
|
|
neck_conv1,
|
|
neck_ln1,
|
|
neck_conv2,
|
|
neck_ln2,
|
|
pos_embed,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl Module for ImageEncoderViT {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
let xs = self.patch_embed.forward(xs)?;
|
|
let mut xs = match &self.pos_embed {
|
|
Some(pos_embed) => (xs + pos_embed)?,
|
|
None => xs,
|
|
};
|
|
for block in self.blocks.iter() {
|
|
xs = block.forward(&xs)?
|
|
}
|
|
xs.permute((0, 3, 1, 2))?
|
|
.apply(&self.neck_conv1)?
|
|
.apply(&self.neck_ln1)?
|
|
.apply(&self.neck_conv2)?
|
|
.apply(&self.neck_ln2)
|
|
}
|
|
}
|