Files
candle/training/simplified.html
2025-04-13 14:47:49 +00:00

396 lines
16 KiB
HTML

<!DOCTYPE HTML>
<html lang="en" class="light sidebar-visible" dir="ltr">
<head>
<!-- Book generated using mdBook -->
<meta charset="UTF-8">
<title>Simplified - Candle Documentation</title>
<!-- Custom HTML head -->
<meta name="description" content="">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="theme-color" content="#ffffff">
<link rel="icon" href="../favicon.svg">
<link rel="shortcut icon" href="../favicon.png">
<link rel="stylesheet" href="../css/variables.css">
<link rel="stylesheet" href="../css/general.css">
<link rel="stylesheet" href="../css/chrome.css">
<link rel="stylesheet" href="../css/print.css" media="print">
<!-- Fonts -->
<link rel="stylesheet" href="../FontAwesome/css/font-awesome.css">
<link rel="stylesheet" href="../fonts/fonts.css">
<!-- Highlight.js Stylesheets -->
<link rel="stylesheet" id="highlight-css" href="../highlight.css">
<link rel="stylesheet" id="tomorrow-night-css" href="../tomorrow-night.css">
<link rel="stylesheet" id="ayu-highlight-css" href="../ayu-highlight.css">
<!-- Custom theme stylesheets -->
<!-- Provide site root and default themes to javascript -->
<script>
const path_to_root = "../";
const default_light_theme = "light";
const default_dark_theme = "navy";
</script>
<!-- Start loading toc.js asap -->
<script src="../toc.js"></script>
</head>
<body>
<div id="body-container">
<!-- Work around some values being stored in localStorage wrapped in quotes -->
<script>
try {
let theme = localStorage.getItem('mdbook-theme');
let sidebar = localStorage.getItem('mdbook-sidebar');
if (theme.startsWith('"') && theme.endsWith('"')) {
localStorage.setItem('mdbook-theme', theme.slice(1, theme.length - 1));
}
if (sidebar.startsWith('"') && sidebar.endsWith('"')) {
localStorage.setItem('mdbook-sidebar', sidebar.slice(1, sidebar.length - 1));
}
} catch (e) { }
</script>
<!-- Set the theme before any content is loaded, prevents flash -->
<script>
const default_theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? default_dark_theme : default_light_theme;
let theme;
try { theme = localStorage.getItem('mdbook-theme'); } catch(e) { }
if (theme === null || theme === undefined) { theme = default_theme; }
const html = document.documentElement;
html.classList.remove('light')
html.classList.add(theme);
html.classList.add("js");
</script>
<input type="checkbox" id="sidebar-toggle-anchor" class="hidden">
<!-- Hide / unhide sidebar before it is displayed -->
<script>
let sidebar = null;
const sidebar_toggle = document.getElementById("sidebar-toggle-anchor");
if (document.body.clientWidth >= 1080) {
try { sidebar = localStorage.getItem('mdbook-sidebar'); } catch(e) { }
sidebar = sidebar || 'visible';
} else {
sidebar = 'hidden';
}
sidebar_toggle.checked = sidebar === 'visible';
html.classList.remove('sidebar-visible');
html.classList.add("sidebar-" + sidebar);
</script>
<nav id="sidebar" class="sidebar" aria-label="Table of contents">
<!-- populated by js -->
<mdbook-sidebar-scrollbox class="sidebar-scrollbox"></mdbook-sidebar-scrollbox>
<noscript>
<iframe class="sidebar-iframe-outer" src="../toc.html"></iframe>
</noscript>
<div id="sidebar-resize-handle" class="sidebar-resize-handle">
<div class="sidebar-resize-indicator"></div>
</div>
</nav>
<div id="page-wrapper" class="page-wrapper">
<div class="page">
<div id="menu-bar-hover-placeholder"></div>
<div id="menu-bar" class="menu-bar sticky">
<div class="left-buttons">
<label id="sidebar-toggle" class="icon-button" for="sidebar-toggle-anchor" title="Toggle Table of Contents" aria-label="Toggle Table of Contents" aria-controls="sidebar">
<i class="fa fa-bars"></i>
</label>
<button id="theme-toggle" class="icon-button" type="button" title="Change theme" aria-label="Change theme" aria-haspopup="true" aria-expanded="false" aria-controls="theme-list">
<i class="fa fa-paint-brush"></i>
</button>
<ul id="theme-list" class="theme-popup" aria-label="Themes" role="menu">
<li role="none"><button role="menuitem" class="theme" id="default_theme">Auto</button></li>
<li role="none"><button role="menuitem" class="theme" id="light">Light</button></li>
<li role="none"><button role="menuitem" class="theme" id="rust">Rust</button></li>
<li role="none"><button role="menuitem" class="theme" id="coal">Coal</button></li>
<li role="none"><button role="menuitem" class="theme" id="navy">Navy</button></li>
<li role="none"><button role="menuitem" class="theme" id="ayu">Ayu</button></li>
</ul>
<button id="search-toggle" class="icon-button" type="button" title="Search. (Shortkey: s)" aria-label="Toggle Searchbar" aria-expanded="false" aria-keyshortcuts="S" aria-controls="searchbar">
<i class="fa fa-search"></i>
</button>
</div>
<h1 class="menu-title">Candle Documentation</h1>
<div class="right-buttons">
<a href="../print.html" title="Print this book" aria-label="Print this book">
<i id="print-button" class="fa fa-print"></i>
</a>
</div>
</div>
<div id="search-wrapper" class="hidden">
<form id="searchbar-outer" class="searchbar-outer">
<input type="search" id="searchbar" name="searchbar" placeholder="Search this book ..." aria-controls="searchresults-outer" aria-describedby="searchresults-header">
</form>
<div id="searchresults-outer" class="searchresults-outer hidden">
<div id="searchresults-header" class="searchresults-header"></div>
<ul id="searchresults">
</ul>
</div>
</div>
<!-- Apply ARIA attributes after the sidebar and the sidebar toggle button are added to the DOM -->
<script>
document.getElementById('sidebar-toggle').setAttribute('aria-expanded', sidebar === 'visible');
document.getElementById('sidebar').setAttribute('aria-hidden', sidebar !== 'visible');
Array.from(document.querySelectorAll('#sidebar a')).forEach(function(link) {
link.setAttribute('tabIndex', sidebar === 'visible' ? 0 : -1);
});
</script>
<div id="content" class="content">
<main>
<h1 id="simplified"><a class="header" href="#simplified">Simplified</a></h1>
<h2 id="how-its-works"><a class="header" href="#how-its-works">How its works</a></h2>
<p>This program implements a neural network to predict the winner of the second round of elections based on the results of the first round.</p>
<p>Basic moments:</p>
<ol>
<li>A multilayer perceptron with two hidden layers is used. The first hidden layer has 4 neurons, the second has 2 neurons.</li>
<li>The input is a vector of 2 numbers - the percentage of votes for the first and second candidates in the first stage.</li>
<li>The output is the number 0 or 1, where 1 means that the first candidate will win in the second stage, 0 means that he will lose.</li>
<li>For training, samples with real data on the results of the first and second stages of different elections are used.</li>
<li>The model is trained by backpropagation using gradient descent and the cross-entropy loss function.</li>
<li>Model parameters (weights of neurons) are initialized randomly, then optimized during training.</li>
<li>After training, the model is tested on a deferred sample to evaluate the accuracy.</li>
<li>If the accuracy on the test set is below 100%, the model is considered underfit and the learning process is repeated.</li>
</ol>
<p>Thus, this neural network learns to find hidden relationships between the results of the first and second rounds of voting in order to make predictions for new data.</p>
<pre><code class="language-rust ignore">const VOTE_DIM: usize = 2;
const RESULTS: usize = 1;
const EPOCHS: usize = 10;
const LAYER1_OUT_SIZE: usize = 4;
const LAYER2_OUT_SIZE: usize = 2;
const LEARNING_RATE: f64 = 0.05;
#[derive(Clone)]
pub struct Dataset {
pub train_votes: Tensor,
pub train_results: Tensor,
pub test_votes: Tensor,
pub test_results: Tensor,
}
struct MultiLevelPerceptron {
ln1: Linear,
ln2: Linear,
ln3: Linear,
}
impl MultiLevelPerceptron {
fn new(vs: VarBuilder) -&gt; Result&lt;Self&gt; {
let ln1 = candle_nn::linear(VOTE_DIM, LAYER1_OUT_SIZE, vs.pp("ln1"))?;
let ln2 = candle_nn::linear(LAYER1_OUT_SIZE, LAYER2_OUT_SIZE, vs.pp("ln2"))?;
let ln3 = candle_nn::linear(LAYER2_OUT_SIZE, RESULTS + 1, vs.pp("ln3"))?;
Ok(Self { ln1, ln2, ln3 })
}
fn forward(&amp;self, xs: &amp;Tensor) -&gt; Result&lt;Tensor&gt; {
let xs = self.ln1.forward(xs)?;
let xs = xs.relu()?;
let xs = self.ln2.forward(&amp;xs)?;
let xs = xs.relu()?;
self.ln3.forward(&amp;xs)
}
}
</code></pre>
<pre><code class="language-rust ignore">fn train(m: Dataset, dev: &amp;Device) -&gt; anyhow::Result&lt;MultiLevelPerceptron&gt; {
let train_results = m.train_results.to_device(dev)?;
let train_votes = m.train_votes.to_device(dev)?;
let varmap = VarMap::new();
let vs = VarBuilder::from_varmap(&amp;varmap, DType::F32, dev);
let model = MultiLevelPerceptron::new(vs.clone())?;
let mut sgd = candle_nn::SGD::new(varmap.all_vars(), LEARNING_RATE)?;
let test_votes = m.test_votes.to_device(dev)?;
let test_results = m.test_results.to_device(dev)?;
let mut final_accuracy: f32 = 0.0;
for epoch in 1..EPOCHS + 1 {
let logits = model.forward(&amp;train_votes)?;
let log_sm = ops::log_softmax(&amp;logits, D::Minus1)?;
let loss = loss::nll(&amp;log_sm, &amp;train_results)?;
sgd.backward_step(&amp;loss)?;
let test_logits = model.forward(&amp;test_votes)?;
let sum_ok = test_logits
.argmax(D::Minus1)?
.eq(&amp;test_results)?
.to_dtype(DType::F32)?
.sum_all()?
.to_scalar::&lt;f32&gt;()?;
let test_accuracy = sum_ok / test_results.dims1()? as f32;
final_accuracy = 100. * test_accuracy;
println!("Epoch: {epoch:3} Train loss: {:8.5} Test accuracy: {:5.2}%",
loss.to_scalar::&lt;f32&gt;()?,
final_accuracy
);
if final_accuracy == 100.0 {
break;
}
}
if final_accuracy &lt; 100.0 {
Err(anyhow::Error::msg("The model is not trained well enough."))
} else {
Ok(model)
}
}</code></pre>
<pre><code class="language-rust ignore">#[tokio::test]
async fn simplified() -&gt; anyhow::Result&lt;()&gt; {
let dev = Device::cuda_if_available(0)?;
let train_votes_vec: Vec&lt;u32&gt; = vec![
15, 10,
10, 15,
5, 12,
30, 20,
16, 12,
13, 25,
6, 14,
31, 21,
];
let train_votes_tensor = Tensor::from_vec(train_votes_vec.clone(), (train_votes_vec.len() / VOTE_DIM, VOTE_DIM), &amp;dev)?.to_dtype(DType::F32)?;
let train_results_vec: Vec&lt;u32&gt; = vec![
1,
0,
0,
1,
1,
0,
0,
1,
];
let train_results_tensor = Tensor::from_vec(train_results_vec, train_votes_vec.len() / VOTE_DIM, &amp;dev)?;
let test_votes_vec: Vec&lt;u32&gt; = vec![
13, 9,
8, 14,
3, 10,
];
let test_votes_tensor = Tensor::from_vec(test_votes_vec.clone(), (test_votes_vec.len() / VOTE_DIM, VOTE_DIM), &amp;dev)?.to_dtype(DType::F32)?;
let test_results_vec: Vec&lt;u32&gt; = vec![
1,
0,
0,
];
let test_results_tensor = Tensor::from_vec(test_results_vec.clone(), test_results_vec.len(), &amp;dev)?;
let m = Dataset {
train_votes: train_votes_tensor,
train_results: train_results_tensor,
test_votes: test_votes_tensor,
test_results: test_results_tensor,
};
let trained_model: MultiLevelPerceptron;
loop {
println!("Trying to train neural network.");
match train(m.clone(), &amp;dev) {
Ok(model) =&gt; {
trained_model = model;
break;
},
Err(e) =&gt; {
println!("Error: {}", e);
continue;
}
}
}
let real_world_votes: Vec&lt;u32&gt; = vec![
13, 22,
];
let tensor_test_votes = Tensor::from_vec(real_world_votes.clone(), (1, VOTE_DIM), &amp;dev)?.to_dtype(DType::F32)?;
let final_result = trained_model.forward(&amp;tensor_test_votes)?;
let result = final_result
.argmax(D::Minus1)?
.to_dtype(DType::F32)?
.get(0).map(|x| x.to_scalar::&lt;f32&gt;())??;
println!("real_life_votes: {:?}", real_world_votes);
println!("neural_network_prediction_result: {:?}", result);
Ok(())
}</code></pre>
<h2 id="example-output"><a class="header" href="#example-output">Example output</a></h2>
<pre><code class="language-bash">Trying to train neural network.
Epoch: 1 Train loss: 4.42555 Test accuracy: 0.00%
Epoch: 2 Train loss: 0.84677 Test accuracy: 33.33%
Epoch: 3 Train loss: 2.54335 Test accuracy: 33.33%
Epoch: 4 Train loss: 0.37806 Test accuracy: 33.33%
Epoch: 5 Train loss: 0.36647 Test accuracy: 100.00%
real_life_votes: [13, 22]
neural_network_prediction_result: 0.0
</code></pre>
</main>
<nav class="nav-wrapper" aria-label="Page navigation">
<!-- Mobile navigation buttons -->
<a rel="prev" href="../training/training.html" class="mobile-nav-chapters previous" title="Previous chapter" aria-label="Previous chapter" aria-keyshortcuts="Left">
<i class="fa fa-angle-left"></i>
</a>
<a rel="next prefetch" href="../training/mnist.html" class="mobile-nav-chapters next" title="Next chapter" aria-label="Next chapter" aria-keyshortcuts="Right">
<i class="fa fa-angle-right"></i>
</a>
<div style="clear: both"></div>
</nav>
</div>
</div>
<nav class="nav-wide-wrapper" aria-label="Page navigation">
<a rel="prev" href="../training/training.html" class="nav-chapters previous" title="Previous chapter" aria-label="Previous chapter" aria-keyshortcuts="Left">
<i class="fa fa-angle-left"></i>
</a>
<a rel="next prefetch" href="../training/mnist.html" class="nav-chapters next" title="Next chapter" aria-label="Next chapter" aria-keyshortcuts="Right">
<i class="fa fa-angle-right"></i>
</a>
</nav>
</div>
<script>
window.playground_copyable = true;
</script>
<script src="../elasticlunr.min.js"></script>
<script src="../mark.min.js"></script>
<script src="../searcher.js"></script>
<script src="../clipboard.min.js"></script>
<script src="../highlight.js"></script>
<script src="../book.js"></script>
<!-- Custom JS scripts -->
</div>
</body>
</html>