Files
candle/candle-pyo3/quant-llama.py
Lukas Kreussel 8658df3485 Generate *.pyi stubs for PyO3 wrapper (#870)
* Begin to generate typehints.

* generate correct stubs

* Correctly include stubs

* Add comments and typhints to static functions

* ensure candle-pyo3 directory

* Make `llama.rope.freq_base` optional

* `fmt`
2023-09-16 17:23:38 +01:00

197 lines
7.8 KiB
Python

# This example shows how the candle Python api can be used to replicate llama.cpp.
import sys
import candle
from candle.utils import load_ggml,load_gguf
MAX_SEQ_LEN = 4096
def masked_fill(on_false, mask, on_true):
shape = mask.shape
on_true = candle.tensor(on_true).broadcast_as(shape)
return mask.where_cond(on_true, on_false)
class RmsNorm:
def __init__(self, qtensor):
self.weight = qtensor.dequantize()
def __call__(self, x):
b_size, seq_len, hidden_size = x.shape
norm_x = x.sqr().sum_keepdim(2) / hidden_size
x_normed = x.broadcast_div((norm_x + 1e-5).sqrt())
return x_normed.broadcast_mul(self.weight)
class QuantizedLayer:
def __init__(self, layer_idx, hparams, all_tensors, cos_sin):
p = f"layers.{layer_idx}"
self.attention_wq = all_tensors[f"{p}.attention.wq.weight"]
self.attention_wk = all_tensors[f"{p}.attention.wk.weight"]
self.attention_wv = all_tensors[f"{p}.attention.wv.weight"]
self.attention_wo = all_tensors[f"{p}.attention.wo.weight"]
self.ffw1 = all_tensors[f"{p}.feed_forward.w1.weight"]
self.ffw2 = all_tensors[f"{p}.feed_forward.w2.weight"]
self.ffw3 = all_tensors[f"{p}.feed_forward.w3.weight"]
self.attn_norm = RmsNorm(all_tensors[f"{p}.attention_norm.weight"])
self.ffn_norm = RmsNorm(all_tensors[f"{p}.ffn_norm.weight"])
self.n_head = hparams["n_head"]
self.n_kv_head = self.n_head
self.head_dim = hparams["n_embd"] // self.n_head
self.kv_cache = None
self.cos = cos_sin[0]
self.sin = cos_sin[1]
def __call__(self, x, mask, index_pos):
residual = x
x = self.attn_norm(x)
attn = self.forward_attn(x, mask, index_pos)
x = attn + residual
residual = x
x = self.ffn_norm(x)
w1 = self.ffw1.matmul_t(x)
w3 = self.ffw3.matmul_t(x)
mlp = self.ffw2.matmul_t(candle.nn.silu(w1) * w3)
return mlp + residual
def forward_attn(self, x, mask, index_pos):
b_size, seq_len, n_embd = x.shape
q = self.attention_wq.matmul_t(x)
k = self.attention_wk.matmul_t(x)
v = self.attention_wv.matmul_t(x)
q = q.reshape((b_size, seq_len, self.n_head, self.head_dim)).transpose(1, 2)
k = k.reshape((b_size, seq_len, self.n_kv_head, self.head_dim)).transpose(1, 2)
v = v.reshape((b_size, seq_len, self.n_kv_head, self.head_dim)).transpose(1, 2)
q = self.apply_rotary_emb(q, index_pos)
k = self.apply_rotary_emb(k, index_pos)
if self.kv_cache is not None and index_pos > 0:
prev_k, prev_v = self.kv_cache
k = candle.cat([prev_k, k], 2).contiguous()
v = candle.cat([prev_v, v], 2).contiguous()
self.kv_cache = (k, v)
# TODO: maybe repeat k/v here if we start supporting MQA.
att = q.matmul(k.t()) / self.head_dim**0.5
mask = mask.broadcast_as(att.shape)
att = masked_fill(att, mask, float("-inf"))
att = candle.nn.softmax(att, -1)
y = att.matmul(v.contiguous())
y = y.transpose(1, 2).reshape((b_size, seq_len, n_embd))
return self.attention_wo.matmul_t(y)
def apply_rotary_emb(self, x, index_pos):
(b_size, n_head, seq_len, n_embd) = x.shape
cos = self.cos.narrow(0, index_pos, seq_len).reshape((seq_len, n_embd//2, 1))
sin = self.sin.narrow(0, index_pos, seq_len).reshape((seq_len, n_embd//2, 1))
x = x.reshape((b_size, n_head, seq_len, n_embd//2, 2))
x0 = x.narrow(-1, 0, 1)
x1 = x.narrow(-1, 1, 1)
y0 = x0.broadcast_mul(cos) - x1.broadcast_mul(sin)
y1 = x0.broadcast_mul(sin) + x1.broadcast_mul(cos)
rope = candle.cat([y0, y1], -1)
return rope.flatten_from(-2)
def precompute_freqs_cis(hparams, freq_base):
head_dim = hparams["n_embd"] // hparams["n_head"]
theta = [1.0 / freq_base ** (i / head_dim) for i in range(0, head_dim, 2)]
theta = candle.tensor(theta)
idx_theta = [float(i) for i in range(MAX_SEQ_LEN)]
idx_theta = candle.tensor(idx_theta).reshape((MAX_SEQ_LEN, 1))
m = idx_theta.matmul(theta.unsqueeze(0))
return (m.cos(), m.sin())
class QuantizedLlama:
def __init__(self, hparams, all_tensors):
self.tok_embeddings = all_tensors["tok_embeddings.weight"].dequantize()
self.norm = RmsNorm(all_tensors["norm.weight"])
self.output = all_tensors["output.weight"]
self.layers = []
rope_freq = hparams.get("rope_freq", 10000.)
cos_sin = precompute_freqs_cis(hparams, rope_freq)
for layer_idx in range(hparams["n_layer"]):
layer = QuantizedLayer(layer_idx, hparams, all_tensors, cos_sin)
self.layers.append(layer)
def __call__(self, token, index_pos):
b_size, seq_len = token.shape
vocab_size, hidden_size = self.tok_embeddings.shape
token = token.reshape((b_size * seq_len,))
x = self.tok_embeddings.index_select(token, 0)
x = x.reshape((b_size, seq_len, hidden_size))
mask = [int(j > i) for j in range(seq_len) for i in range(seq_len)]
mask = candle.tensor(mask).reshape((seq_len, seq_len))
for layer in self.layers:
x = layer(x, mask, index_pos)
x = self.norm(x)
x = x.narrow(1, -1, 1).squeeze(1)
x = self.output.matmul_t(x)
return x
def gguf_rename(tensor_name):
if tensor_name == 'token_embd.weight': return 'tok_embeddings.weight'
if tensor_name == 'output_norm.weight': return 'norm.weight'
tensor_name = tensor_name.replace('blk.', 'layers.')
tensor_name = tensor_name.replace('.attn_q.', '.attention.wq.')
tensor_name = tensor_name.replace('.attn_k.', '.attention.wk.')
tensor_name = tensor_name.replace('.attn_v.', '.attention.wv.')
tensor_name = tensor_name.replace('.attn_output.', '.attention.wo.')
tensor_name = tensor_name.replace('.ffn_gate.', '.feed_forward.w1.')
tensor_name = tensor_name.replace('.ffn_down.', '.feed_forward.w2.')
tensor_name = tensor_name.replace('.ffn_up.', '.feed_forward.w3.')
tensor_name = tensor_name.replace('.attn_norm.', '.attention_norm.')
return tensor_name
def main():
if len(sys.argv) < 2:
raise ValueError("missing weight file argument")
filename = sys.argv[1]
print(f"reading model file {filename}")
if filename.endswith("gguf"):
all_tensors, metadata = load_gguf(sys.argv[1])
vocab = metadata["tokenizer.ggml.tokens"]
for i, v in enumerate(vocab):
vocab[i] = '\n' if v == '<0x0A>' else v.replace('', ' ')
hparams = {k: v for (k, v) in metadata.items() if not k.startswith("tokenizer")}
print(hparams)
hparams = {
'n_vocab': len(vocab),
'n_embd': metadata['llama.embedding_length'],
'n_mult': 256,
'n_head': metadata['llama.attention.head_count'],
'n_head_kv': metadata['llama.attention.head_count_kv'],
'n_layer': metadata['llama.block_count'],
'n_rot': metadata['llama.rope.dimension_count'],
'rope_freq': metadata.get('llama.rope.freq_base', 10000.),
'ftype': metadata['general.file_type'],
}
all_tensors = { gguf_rename(k): v for k, v in all_tensors.items() }
else:
all_tensors, hparams, vocab = load_ggml(sys.argv[1])
print(hparams)
model = QuantizedLlama(hparams, all_tensors)
print("model built, starting inference")
tokens = [1]
for token_idx in range(500):
last_token = tokens[-1]
lt = candle.tensor([last_token]).unsqueeze(0)
logits = model(lt, len(tokens))
# Greedy sampling for now
# pr = candle.nn.softmax(logits, -1)
m = logits.get(0).argmax_keepdim(-1)
next_token = m.values()[0]
print(vocab[next_token], end='', flush=True)
tokens.append(next_token)
if __name__ == '__main__':
main()