mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 10:26:33 +00:00
442 lines
15 KiB
Rust
442 lines
15 KiB
Rust
use candle::{Device, IndexOp, Result, Tensor};
|
|
use candle_nn::{ops::softmax, Conv1d, Conv1dConfig, Embedding, LayerNorm, VarBuilder};
|
|
use serde::Deserialize;
|
|
|
|
// The names in comments correspond to the original implementation:
|
|
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L17
|
|
#[derive(Debug, Clone, PartialEq, Deserialize)]
|
|
pub struct Config {
|
|
pub num_mel_bins: usize, // n_mels
|
|
pub max_source_positions: usize, // n_audio_ctx
|
|
pub d_model: usize, // n_audio_state
|
|
pub encoder_attention_heads: usize, // n_audio_head
|
|
pub encoder_layers: usize, // n_audio_layer
|
|
pub vocab_size: usize, // n_vocab
|
|
pub max_target_positions: usize, // n_text_ctx
|
|
// pub n_text_state: usize,
|
|
pub decoder_attention_heads: usize, // n_text_head
|
|
pub decoder_layers: usize, // n_text_layer
|
|
pub suppress_tokens: Vec<u32>,
|
|
}
|
|
|
|
impl Config {
|
|
#[allow(dead_code)]
|
|
pub fn tiny_en() -> Self {
|
|
let suppress_tokens = vec![
|
|
1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93,
|
|
357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391,
|
|
1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329,
|
|
7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306,
|
|
16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409,
|
|
34949, 40283, 40493, 40549, 47282, 49146, 50257, 50357, 50358, 50359, 50360, 50361,
|
|
50362,
|
|
];
|
|
Self {
|
|
num_mel_bins: 80,
|
|
vocab_size: 51864,
|
|
max_source_positions: 1500,
|
|
d_model: 384,
|
|
encoder_attention_heads: 6,
|
|
encoder_layers: 4,
|
|
max_target_positions: 448,
|
|
// n_text_state: 384,
|
|
decoder_attention_heads: 6,
|
|
decoder_layers: 4,
|
|
suppress_tokens,
|
|
}
|
|
}
|
|
}
|
|
|
|
fn embedding(vocab_size: usize, hidden_size: usize, vb: VarBuilder) -> Result<Embedding> {
|
|
let embeddings = vb.get((vocab_size, hidden_size), "weight")?;
|
|
Ok(Embedding::new(embeddings, hidden_size))
|
|
}
|
|
//
|
|
// We wrap the `Linear` layer here to add some tracing so that it's easier to profile the resulting
|
|
// model.
|
|
#[derive(Debug)]
|
|
pub struct Linear {
|
|
inner: candle_nn::Linear,
|
|
span: tracing::Span,
|
|
}
|
|
|
|
impl Linear {
|
|
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
|
let _enter = self.span.enter();
|
|
self.inner.forward(x)
|
|
}
|
|
}
|
|
|
|
fn linear(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
|
|
let span = tracing::span!(tracing::Level::TRACE, "linear");
|
|
let inner = candle_nn::linear(size1, size2, vb)?;
|
|
Ok(Linear { inner, span })
|
|
}
|
|
|
|
fn linear_no_bias(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
|
|
let span = tracing::span!(tracing::Level::TRACE, "linear");
|
|
let inner = candle_nn::linear_no_bias(size1, size2, vb)?;
|
|
Ok(Linear { inner, span })
|
|
}
|
|
|
|
fn conv1d(
|
|
in_channels: usize,
|
|
out_channels: usize,
|
|
kernel_size: usize,
|
|
config: Conv1dConfig,
|
|
vb: VarBuilder,
|
|
) -> Result<Conv1d> {
|
|
let weight = vb.get((out_channels, in_channels, kernel_size), "weight")?;
|
|
let bias = vb.get(out_channels, "bias")?;
|
|
Ok(Conv1d::new(weight, Some(bias), config))
|
|
}
|
|
|
|
fn layer_norm(size: usize, vb: VarBuilder) -> Result<LayerNorm> {
|
|
let weight = vb.get(size, "weight")?;
|
|
let bias = vb.get(size, "bias")?;
|
|
Ok(LayerNorm::new(weight, bias, 1e-5))
|
|
}
|
|
|
|
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L62
|
|
struct MultiHeadAttention {
|
|
query: Linear,
|
|
key: Linear,
|
|
value: Linear,
|
|
out: Linear,
|
|
n_head: usize,
|
|
span: tracing::Span,
|
|
softmax_span: tracing::Span,
|
|
matmul_span: tracing::Span,
|
|
kv_cache: Option<(Tensor, Tensor)>,
|
|
}
|
|
|
|
impl MultiHeadAttention {
|
|
fn load(n_state: usize, n_head: usize, vb: VarBuilder) -> Result<Self> {
|
|
let span = tracing::span!(tracing::Level::TRACE, "multi-head-attn");
|
|
let softmax_span = tracing::span!(tracing::Level::TRACE, "multi-head-attn-softmax");
|
|
let matmul_span = tracing::span!(tracing::Level::TRACE, "multi-head-attn-matmul");
|
|
let query = linear(n_state, n_state, vb.pp("q_proj"))?;
|
|
let value = linear(n_state, n_state, vb.pp("v_proj"))?;
|
|
let key = linear_no_bias(n_state, n_state, vb.pp("k_proj"))?;
|
|
let out = linear(n_state, n_state, vb.pp("out_proj"))?;
|
|
Ok(Self {
|
|
query,
|
|
key,
|
|
value,
|
|
out,
|
|
n_head,
|
|
span,
|
|
softmax_span,
|
|
matmul_span,
|
|
kv_cache: None,
|
|
})
|
|
}
|
|
|
|
fn forward(
|
|
&mut self,
|
|
x: &Tensor,
|
|
xa: Option<&Tensor>,
|
|
mask: Option<&Tensor>,
|
|
flush_cache: bool,
|
|
) -> Result<Tensor> {
|
|
let _enter = self.span.enter();
|
|
let q = self.query.forward(x)?;
|
|
let (k, v) = match xa {
|
|
None => {
|
|
let k = self.key.forward(x)?;
|
|
let v = self.value.forward(x)?;
|
|
(k, v)
|
|
}
|
|
Some(x) => {
|
|
if flush_cache {
|
|
self.kv_cache = None;
|
|
}
|
|
if let Some((k, v)) = &self.kv_cache {
|
|
(k.clone(), v.clone())
|
|
} else {
|
|
let k = self.key.forward(x)?;
|
|
let v = self.value.forward(x)?;
|
|
self.kv_cache = Some((k.clone(), v.clone()));
|
|
(k, v)
|
|
}
|
|
}
|
|
};
|
|
let wv = self.qkv_attention(&q, &k, &v, mask)?;
|
|
let out = self.out.forward(&wv)?;
|
|
Ok(out)
|
|
}
|
|
|
|
fn reshape_head(&self, x: &Tensor) -> Result<Tensor> {
|
|
let (n_batch, n_ctx, n_state) = x.dims3()?;
|
|
let target_dims = &[n_batch, n_ctx, self.n_head, n_state / self.n_head];
|
|
x.reshape(target_dims)?.transpose(1, 2)
|
|
}
|
|
|
|
fn qkv_attention(
|
|
&self,
|
|
q: &Tensor,
|
|
k: &Tensor,
|
|
v: &Tensor,
|
|
mask: Option<&Tensor>,
|
|
) -> Result<Tensor> {
|
|
let (_, n_ctx, n_state) = q.dims3()?;
|
|
let scale = ((n_state / self.n_head) as f64).powf(-0.25);
|
|
let q = (self.reshape_head(q)? * scale)?;
|
|
let k = (self.reshape_head(k)?.transpose(2, 3)? * scale)?;
|
|
let v = self.reshape_head(v)?.contiguous()?;
|
|
let mut qk = {
|
|
let _enter = self.matmul_span.enter();
|
|
q.matmul(&k)?
|
|
};
|
|
if let Some(mask) = mask {
|
|
let mask = mask.i((0..n_ctx, 0..n_ctx))?;
|
|
qk = qk.broadcast_add(&mask)?
|
|
}
|
|
let w = {
|
|
let _enter = self.softmax_span.enter();
|
|
softmax(&qk, candle::D::Minus1)?
|
|
};
|
|
let wv = {
|
|
let _enter = self.matmul_span.enter();
|
|
w.matmul(&v)?
|
|
}
|
|
.transpose(1, 2)?
|
|
.flatten_from(2)?;
|
|
Ok(wv)
|
|
}
|
|
}
|
|
|
|
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L111
|
|
struct ResidualAttentionBlock {
|
|
attn: MultiHeadAttention,
|
|
attn_ln: LayerNorm,
|
|
cross_attn: Option<(MultiHeadAttention, LayerNorm)>,
|
|
mlp_linear1: Linear,
|
|
mlp_linear2: Linear,
|
|
mlp_ln: LayerNorm,
|
|
span: tracing::Span,
|
|
}
|
|
|
|
impl ResidualAttentionBlock {
|
|
fn load(n_state: usize, n_head: usize, ca: bool, vb: VarBuilder) -> Result<Self> {
|
|
let span = tracing::span!(tracing::Level::TRACE, "residual-attn");
|
|
let attn = MultiHeadAttention::load(n_state, n_head, vb.pp("self_attn"))?;
|
|
let attn_ln = layer_norm(n_state, vb.pp("self_attn_layer_norm"))?;
|
|
let cross_attn = if ca {
|
|
let cross_attn = MultiHeadAttention::load(n_state, n_head, vb.pp("encoder_attn"))?;
|
|
let cross_attn_ln = layer_norm(n_state, vb.pp("encoder_attn_layer_norm"))?;
|
|
Some((cross_attn, cross_attn_ln))
|
|
} else {
|
|
None
|
|
};
|
|
let n_mlp = n_state * 4;
|
|
let mlp_linear1 = linear(n_state, n_mlp, vb.pp("fc1"))?;
|
|
let mlp_linear2 = linear(n_mlp, n_state, vb.pp("fc2"))?;
|
|
let mlp_ln = layer_norm(n_state, vb.pp("final_layer_norm"))?;
|
|
Ok(Self {
|
|
attn,
|
|
attn_ln,
|
|
cross_attn,
|
|
mlp_linear1,
|
|
mlp_linear2,
|
|
mlp_ln,
|
|
span,
|
|
})
|
|
}
|
|
|
|
fn forward(
|
|
&mut self,
|
|
x: &Tensor,
|
|
xa: Option<&Tensor>,
|
|
mask: Option<&Tensor>,
|
|
flush_kv_cache: bool,
|
|
) -> Result<Tensor> {
|
|
let _enter = self.span.enter();
|
|
let attn = self
|
|
.attn
|
|
.forward(&self.attn_ln.forward(x)?, None, mask, flush_kv_cache)?;
|
|
let mut x = (x + attn)?;
|
|
if let Some((attn, ln)) = &mut self.cross_attn {
|
|
x = (&x + attn.forward(&ln.forward(&x)?, xa, None, flush_kv_cache)?)?;
|
|
}
|
|
let mlp = self.mlp_linear2.forward(
|
|
&self
|
|
.mlp_linear1
|
|
.forward(&self.mlp_ln.forward(&x)?)?
|
|
.gelu()?,
|
|
)?;
|
|
x + mlp
|
|
}
|
|
}
|
|
|
|
fn sinusoids(length: usize, channels: usize) -> Result<Tensor> {
|
|
let max_timescale = 10000f32;
|
|
let log_timescale_increment = max_timescale.ln() / (channels / 2 - 1) as f32;
|
|
let inv_timescales: Vec<_> = (0..channels / 2)
|
|
.map(|i| (i as f32 * (-log_timescale_increment)).exp())
|
|
.collect();
|
|
let inv_timescales = Tensor::new(inv_timescales.as_slice(), &Device::Cpu)?.unsqueeze(0)?;
|
|
let arange = Tensor::arange(0, length as u32, &Device::Cpu)?
|
|
.to_dtype(candle::DType::F32)?
|
|
.unsqueeze(1)?;
|
|
let sh = (length, channels / 2);
|
|
let scaled_time = (arange.broadcast_as(sh)? * inv_timescales.broadcast_as(sh)?)?;
|
|
let sincos = Tensor::cat(&[scaled_time.sin()?, scaled_time.cos()?], 1)?;
|
|
Ok(sincos)
|
|
}
|
|
|
|
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L143
|
|
pub struct AudioEncoder {
|
|
conv1: Conv1d,
|
|
conv2: Conv1d,
|
|
positional_embedding: Tensor,
|
|
blocks: Vec<ResidualAttentionBlock>,
|
|
ln_post: LayerNorm,
|
|
span: tracing::Span,
|
|
conv1_span: tracing::Span,
|
|
conv2_span: tracing::Span,
|
|
}
|
|
|
|
impl AudioEncoder {
|
|
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
|
|
let span = tracing::span!(tracing::Level::TRACE, "audio-encoder");
|
|
let conv1_span = tracing::span!(tracing::Level::TRACE, "conv1");
|
|
let conv2_span = tracing::span!(tracing::Level::TRACE, "conv2");
|
|
let n_state = cfg.d_model;
|
|
let n_head = cfg.encoder_attention_heads;
|
|
let n_ctx = cfg.max_source_positions;
|
|
let cfg1 = Conv1dConfig {
|
|
padding: 1,
|
|
stride: 1,
|
|
};
|
|
let cfg2 = Conv1dConfig {
|
|
padding: 1,
|
|
stride: 2,
|
|
};
|
|
let conv1 = conv1d(cfg.num_mel_bins, n_state, 3, cfg1, vb.pp("conv1"))?;
|
|
let conv2 = conv1d(n_state, n_state, 3, cfg2, vb.pp("conv2"))?;
|
|
let positional_embedding = sinusoids(n_ctx, n_state)?.to_device(vb.device())?;
|
|
let blocks = (0..cfg.encoder_layers)
|
|
.map(|i| {
|
|
ResidualAttentionBlock::load(n_state, n_head, false, vb.pp(&format!("layers.{i}")))
|
|
})
|
|
.collect::<Result<Vec<_>>>()?;
|
|
let ln_post = layer_norm(n_state, vb.pp("layer_norm"))?;
|
|
Ok(Self {
|
|
conv1,
|
|
conv2,
|
|
positional_embedding,
|
|
blocks,
|
|
ln_post,
|
|
conv1_span,
|
|
conv2_span,
|
|
span,
|
|
})
|
|
}
|
|
|
|
pub fn forward(&mut self, x: &Tensor, flush_kv_cache: bool) -> Result<Tensor> {
|
|
let _enter = self.span.enter();
|
|
let x = {
|
|
let _enter = self.conv1_span.enter();
|
|
self.conv1.forward(x)?.gelu()?
|
|
};
|
|
let x = {
|
|
let _enter = self.conv2_span.enter();
|
|
self.conv2.forward(&x)?.gelu()?
|
|
};
|
|
let x = x.transpose(1, 2)?;
|
|
let (_bsize, seq_len, _hidden) = x.dims3()?;
|
|
let positional_embedding = self.positional_embedding.narrow(0, 0, seq_len)?;
|
|
let mut x = x.broadcast_add(&positional_embedding)?;
|
|
for block in self.blocks.iter_mut() {
|
|
x = block.forward(&x, None, None, flush_kv_cache)?
|
|
}
|
|
let x = self.ln_post.forward(&x)?;
|
|
Ok(x)
|
|
}
|
|
}
|
|
|
|
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L176
|
|
pub struct TextDecoder {
|
|
token_embedding: Embedding,
|
|
positional_embedding: Tensor,
|
|
blocks: Vec<ResidualAttentionBlock>,
|
|
ln: LayerNorm,
|
|
mask: Tensor,
|
|
span: tracing::Span,
|
|
span_final: tracing::Span,
|
|
}
|
|
|
|
impl TextDecoder {
|
|
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
|
|
let span = tracing::span!(tracing::Level::TRACE, "text-decoder");
|
|
let span_final = tracing::span!(tracing::Level::TRACE, "text-decoder-final");
|
|
let n_state = cfg.d_model;
|
|
let n_head = cfg.decoder_attention_heads;
|
|
let n_ctx = cfg.max_target_positions;
|
|
let token_embedding = embedding(cfg.vocab_size, n_state, vb.pp("embed_tokens"))?;
|
|
let positional_embedding = vb.get((n_ctx, n_state), "embed_positions.weight")?;
|
|
let blocks = (0..cfg.decoder_layers)
|
|
.map(|i| {
|
|
ResidualAttentionBlock::load(n_state, n_head, true, vb.pp(&format!("layers.{i}")))
|
|
})
|
|
.collect::<Result<Vec<_>>>()?;
|
|
let ln = layer_norm(n_state, vb.pp("layer_norm"))?;
|
|
let mask: Vec<_> = (0..n_ctx)
|
|
.flat_map(|i| (0..n_ctx).map(move |j| if j > i { f32::NEG_INFINITY } else { 0f32 }))
|
|
.collect();
|
|
let mask = Tensor::from_vec(mask, (n_ctx, n_ctx), vb.device())?;
|
|
Ok(Self {
|
|
token_embedding,
|
|
positional_embedding,
|
|
blocks,
|
|
ln,
|
|
mask,
|
|
span,
|
|
span_final,
|
|
})
|
|
}
|
|
|
|
pub fn forward(&mut self, x: &Tensor, xa: &Tensor, flush_kv_cache: bool) -> Result<Tensor> {
|
|
let _enter = self.span.enter();
|
|
let x_dims = x.dims();
|
|
let last = x_dims[x_dims.len() - 1];
|
|
let token_embedding = self.token_embedding.forward(x)?;
|
|
let positional_embedding = self.positional_embedding.narrow(0, 0, last)?;
|
|
let mut x = token_embedding.broadcast_add(&positional_embedding)?;
|
|
for block in self.blocks.iter_mut() {
|
|
x = block.forward(&x, Some(xa), Some(&self.mask), flush_kv_cache)?;
|
|
}
|
|
self.ln.forward(&x)
|
|
}
|
|
|
|
pub fn final_linear(&self, x: &Tensor) -> Result<Tensor> {
|
|
let b_size = x.dim(0)?;
|
|
let w = self.token_embedding.embeddings().broadcast_left(b_size)?;
|
|
let logits = {
|
|
let _enter = self.span_final.enter();
|
|
x.matmul(&w.t()?)?
|
|
};
|
|
Ok(logits)
|
|
}
|
|
}
|
|
|
|
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L221
|
|
pub struct Whisper {
|
|
pub encoder: AudioEncoder,
|
|
pub decoder: TextDecoder,
|
|
pub config: Config,
|
|
}
|
|
|
|
impl Whisper {
|
|
pub fn load(vb: &VarBuilder, config: Config) -> Result<Self> {
|
|
let encoder = AudioEncoder::load(vb.pp("model.encoder"), &config)?;
|
|
let decoder = TextDecoder::load(vb.pp("model.decoder"), &config)?;
|
|
Ok(Self {
|
|
encoder,
|
|
decoder,
|
|
config,
|
|
})
|
|
}
|
|
}
|