Files
candle/candle-kernels/src/quantized.cu
Laurent Mazare 8de0ce6cba Add more QMMV cuda kernels. (#2077)
* Add more QMMV cuda kernels.

* Enable the new kernels.

* Adapt the testing.
2024-04-18 08:36:43 +02:00

4283 lines
153 KiB
Plaintext

// Kernels adapted from llama.cpp ggml-cuda.cu
// https://github.com/ggerganov/llama.cpp/blob/master/ggml-cuda.cu
#include "cuda_fp16.h"
#include "cuda_bf16.h"
#include<stdint.h>
#define GGML_UNUSED(x) (void)(x)
#define GGML_CUDA_ASSUME(x)
#ifdef GGML_QKK_64
#define QK_K 64
#define K_SCALE_SIZE 4
#else
#define QK_K 256
#define K_SCALE_SIZE 12
#endif
#undef GGML_CUDA_F16
#define GGML_CUDA_DMMV_X 32
#define CUDA_QUANTIZE_BLOCK_SIZE 256
#define CUDA_DEQUANTIZE_BLOCK_SIZE 256
#define K_QUANTS_PER_ITERATION 2
typedef uint16_t ggml_fp16_t;
typedef float dfloat; // dequantize float
typedef float2 dfloat2;
typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
static __device__ __forceinline__ float warp_reduce_sum(float x) {
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
x += __shfl_xor_sync(0xffffffff, x, mask, 32);
}
return x;
}
static __device__ __forceinline__ float warp_reduce_max(float x) {
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
}
return x;
}
static __device__ __forceinline__ int get_int_from_int8(const int8_t * x8, const int & i32) {
const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
int x32 = 0;
x32 |= x16[0] << 0;
x32 |= x16[1] << 16;
return x32;
}
static __device__ __forceinline__ int get_int_from_uint8(const uint8_t * x8, const int & i32) {
const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
int x32 = 0;
x32 |= x16[0] << 0;
x32 |= x16[1] << 16;
return x32;
}
static __device__ __forceinline__ int get_int_from_int8_aligned(const int8_t * x8, const int & i32) {
return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
}
static __device__ __forceinline__ int get_int_from_uint8_aligned(const uint8_t * x8, const int & i32) {
return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
}
#define WARP_SIZE 32
#define CUDART_HMAX 11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed)
#define CC_PASCAL 600
#define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
#define CC_VOLTA 700
#define CC_OFFSET_AMD 1000000
#define CC_RDNA1 (CC_OFFSET_AMD + 1010)
#define CC_RDNA2 (CC_OFFSET_AMD + 1030)
#define CC_RDNA3 (CC_OFFSET_AMD + 1100)
#define MMQ_X_Q4_0_RDNA2 64
#define MMQ_Y_Q4_0_RDNA2 128
#define NWARPS_Q4_0_RDNA2 8
#define MMQ_X_Q4_0_RDNA1 64
#define MMQ_Y_Q4_0_RDNA1 64
#define NWARPS_Q4_0_RDNA1 8
#if defined(CUDA_USE_TENSOR_CORES)
#define MMQ_X_Q4_0_AMPERE 4
#define MMQ_Y_Q4_0_AMPERE 32
#define NWARPS_Q4_0_AMPERE 4
#else
#define MMQ_X_Q4_0_AMPERE 64
#define MMQ_Y_Q4_0_AMPERE 128
#define NWARPS_Q4_0_AMPERE 4
#endif
#define MMQ_X_Q4_0_PASCAL 64
#define MMQ_Y_Q4_0_PASCAL 64
#define NWARPS_Q4_0_PASCAL 8
#define MMQ_X_Q4_1_RDNA2 64
#define MMQ_Y_Q4_1_RDNA2 128
#define NWARPS_Q4_1_RDNA2 8
#define MMQ_X_Q4_1_RDNA1 64
#define MMQ_Y_Q4_1_RDNA1 64
#define NWARPS_Q4_1_RDNA1 8
#if defined(CUDA_USE_TENSOR_CORES)
#define MMQ_X_Q4_1_AMPERE 4
#define MMQ_Y_Q4_1_AMPERE 32
#define NWARPS_Q4_1_AMPERE 4
#else
#define MMQ_X_Q4_1_AMPERE 64
#define MMQ_Y_Q4_1_AMPERE 128
#define NWARPS_Q4_1_AMPERE 4
#endif
#define MMQ_X_Q4_1_PASCAL 64
#define MMQ_Y_Q4_1_PASCAL 64
#define NWARPS_Q4_1_PASCAL 8
#define MMQ_X_Q5_0_RDNA2 64
#define MMQ_Y_Q5_0_RDNA2 128
#define NWARPS_Q5_0_RDNA2 8
#define MMQ_X_Q5_0_RDNA1 64
#define MMQ_Y_Q5_0_RDNA1 64
#define NWARPS_Q5_0_RDNA1 8
#if defined(CUDA_USE_TENSOR_CORES)
#define MMQ_X_Q5_0_AMPERE 4
#define MMQ_Y_Q5_0_AMPERE 32
#define NWARPS_Q5_0_AMPERE 4
#else
#define MMQ_X_Q5_0_AMPERE 128
#define MMQ_Y_Q5_0_AMPERE 64
#define NWARPS_Q5_0_AMPERE 4
#endif
#define MMQ_X_Q5_0_PASCAL 64
#define MMQ_Y_Q5_0_PASCAL 64
#define NWARPS_Q5_0_PASCAL 8
#define MMQ_X_Q5_1_RDNA2 64
#define MMQ_Y_Q5_1_RDNA2 128
#define NWARPS_Q5_1_RDNA2 8
#define MMQ_X_Q5_1_RDNA1 64
#define MMQ_Y_Q5_1_RDNA1 64
#define NWARPS_Q5_1_RDNA1 8
#if defined(CUDA_USE_TENSOR_CORES)
#define MMQ_X_Q5_1_AMPERE 4
#define MMQ_Y_Q5_1_AMPERE 32
#define NWARPS_Q5_1_AMPERE 4
#else
#define MMQ_X_Q5_1_AMPERE 128
#define MMQ_Y_Q5_1_AMPERE 64
#define NWARPS_Q5_1_AMPERE 4
#endif
#define MMQ_X_Q5_1_PASCAL 64
#define MMQ_Y_Q5_1_PASCAL 64
#define NWARPS_Q5_1_PASCAL 8
#define MMQ_X_Q8_0_RDNA2 64
#define MMQ_Y_Q8_0_RDNA2 128
#define NWARPS_Q8_0_RDNA2 8
#define MMQ_X_Q8_0_RDNA1 64
#define MMQ_Y_Q8_0_RDNA1 64
#define NWARPS_Q8_0_RDNA1 8
#if defined(CUDA_USE_TENSOR_CORES)
#define MMQ_X_Q8_0_AMPERE 4
#define MMQ_Y_Q8_0_AMPERE 32
#define NWARPS_Q8_0_AMPERE 4
#else
#define MMQ_X_Q8_0_AMPERE 128
#define MMQ_Y_Q8_0_AMPERE 64
#define NWARPS_Q8_0_AMPERE 4
#endif
#define MMQ_X_Q8_0_PASCAL 64
#define MMQ_Y_Q8_0_PASCAL 64
#define NWARPS_Q8_0_PASCAL 8
#define MMQ_X_Q2_K_RDNA2 64
#define MMQ_Y_Q2_K_RDNA2 128
#define NWARPS_Q2_K_RDNA2 8
#define MMQ_X_Q2_K_RDNA1 128
#define MMQ_Y_Q2_K_RDNA1 32
#define NWARPS_Q2_K_RDNA1 8
#if defined(CUDA_USE_TENSOR_CORES)
#define MMQ_X_Q2_K_AMPERE 4
#define MMQ_Y_Q2_K_AMPERE 32
#define NWARPS_Q2_K_AMPERE 4
#else
#define MMQ_X_Q2_K_AMPERE 64
#define MMQ_Y_Q2_K_AMPERE 128
#define NWARPS_Q2_K_AMPERE 4
#endif
#define MMQ_X_Q2_K_PASCAL 64
#define MMQ_Y_Q2_K_PASCAL 64
#define NWARPS_Q2_K_PASCAL 8
#define MMQ_X_Q3_K_RDNA2 128
#define MMQ_Y_Q3_K_RDNA2 64
#define NWARPS_Q3_K_RDNA2 8
#define MMQ_X_Q3_K_RDNA1 32
#define MMQ_Y_Q3_K_RDNA1 128
#define NWARPS_Q3_K_RDNA1 8
#if defined(CUDA_USE_TENSOR_CORES)
#define MMQ_X_Q3_K_AMPERE 4
#define MMQ_Y_Q3_K_AMPERE 32
#define NWARPS_Q3_K_AMPERE 4
#else
#define MMQ_X_Q3_K_AMPERE 128
#define MMQ_Y_Q3_K_AMPERE 128
#define NWARPS_Q3_K_AMPERE 4
#endif
#define MMQ_X_Q3_K_PASCAL 64
#define MMQ_Y_Q3_K_PASCAL 64
#define NWARPS_Q3_K_PASCAL 8
#define MMQ_X_Q4_K_RDNA2 64
#define MMQ_Y_Q4_K_RDNA2 128
#define NWARPS_Q4_K_RDNA2 8
#define MMQ_X_Q4_K_RDNA1 32
#define MMQ_Y_Q4_K_RDNA1 64
#define NWARPS_Q4_K_RDNA1 8
#if defined(CUDA_USE_TENSOR_CORES)
#define MMQ_X_Q4_K_AMPERE 4
#define MMQ_Y_Q4_K_AMPERE 32
#define NWARPS_Q4_K_AMPERE 4
#else
#define MMQ_X_Q4_K_AMPERE 64
#define MMQ_Y_Q4_K_AMPERE 128
#define NWARPS_Q4_K_AMPERE 4
#endif
#define MMQ_X_Q4_K_PASCAL 64
#define MMQ_Y_Q4_K_PASCAL 64
#define NWARPS_Q4_K_PASCAL 8
#define MMQ_X_Q5_K_RDNA2 64
#define MMQ_Y_Q5_K_RDNA2 128
#define NWARPS_Q5_K_RDNA2 8
#define MMQ_X_Q5_K_RDNA1 32
#define MMQ_Y_Q5_K_RDNA1 64
#define NWARPS_Q5_K_RDNA1 8
#if defined(CUDA_USE_TENSOR_CORES)
#define MMQ_X_Q5_K_AMPERE 4
#define MMQ_Y_Q5_K_AMPERE 32
#define NWARPS_Q5_K_AMPERE 4
#else
#define MMQ_X_Q5_K_AMPERE 64
#define MMQ_Y_Q5_K_AMPERE 128
#define NWARPS_Q5_K_AMPERE 4
#endif
#define MMQ_X_Q5_K_PASCAL 64
#define MMQ_Y_Q5_K_PASCAL 64
#define NWARPS_Q5_K_PASCAL 8
#define MMQ_X_Q6_K_RDNA2 64
#define MMQ_Y_Q6_K_RDNA2 128
#define NWARPS_Q6_K_RDNA2 8
#define MMQ_X_Q6_K_RDNA1 32
#define MMQ_Y_Q6_K_RDNA1 64
#define NWARPS_Q6_K_RDNA1 8
#if defined(CUDA_USE_TENSOR_CORES)
#define MMQ_X_Q6_K_AMPERE 4
#define MMQ_Y_Q6_K_AMPERE 32
#define NWARPS_Q6_K_AMPERE 4
#else
#define MMQ_X_Q6_K_AMPERE 64
#define MMQ_Y_Q6_K_AMPERE 64
#define NWARPS_Q6_K_AMPERE 4
#endif
#define MMQ_X_Q6_K_PASCAL 64
#define MMQ_Y_Q6_K_PASCAL 64
#define NWARPS_Q6_K_PASCAL 8
// QK = number of values after dequantization
// QR = QK / number of values before dequantization
// QI = number of 32 bit integers before dequantization
#define QK4_0 32
#define QR4_0 2
#define QI4_0 (QK4_0 / (4 * QR4_0))
typedef struct {
half d; // delta
uint8_t qs[QK4_0 / 2]; // nibbles / quants
} block_q4_0;
static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
#define QK4_1 32
#define QR4_1 2
#define QI4_1 (QK4_1 / (4 * QR4_1))
typedef struct {
half2 dm; // dm.x = delta, dm.y = min
uint8_t qs[QK4_1 / 2]; // nibbles / quants
} block_q4_1;
static_assert(sizeof(block_q4_1) == sizeof(ggml_fp16_t) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
#define QK5_0 32
#define QR5_0 2
#define QI5_0 (QK5_0 / (4 * QR5_0))
typedef struct {
half d; // delta
uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_0 / 2]; // nibbles / quants
} block_q5_0;
static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
#define QK5_1 32
#define QR5_1 2
#define QI5_1 (QK5_1 / (4 * QR5_1))
typedef struct {
half2 dm; // dm.x = delta, dm.y = min
uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_1 / 2]; // nibbles / quants
} block_q5_1;
static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
#define QK8_0 32
#define QR8_0 1
#define QI8_0 (QK8_0 / (4 * QR8_0))
typedef struct {
half d; // delta
int8_t qs[QK8_0]; // quants
} block_q8_0;
static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
#define QK8_1 32
#define QR8_1 1
#define QI8_1 (QK8_1 / (4 * QR8_1))
typedef struct {
half2 ds; // ds.x = delta, ds.y = sum
int8_t qs[QK8_0]; // quants
} block_q8_1;
static_assert(sizeof(block_q8_1) == 2*sizeof(ggml_fp16_t) + QK8_0, "wrong q8_1 block size/padding");
typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);
typedef void (*allocate_tiles_cuda_t)(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc);
typedef void (*load_tiles_cuda_t)(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row);
typedef float (*vec_dot_q_mul_mat_cuda_t)(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ms, const int & i, const int & j, const int & k);
#define QR2_K 4
#define QI2_K (QK_K / (4*QR2_K))
typedef struct {
uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
uint8_t qs[QK_K/4]; // quants
half2 dm; // super-block scale for quantized scales/mins
} block_q2_K;
static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
#define QR3_K 4
#define QI3_K (QK_K / (4*QR3_K))
typedef struct {
uint8_t hmask[QK_K/8]; // quants - high bit
uint8_t qs[QK_K/4]; // quants - low 2 bits
#ifdef GGML_QKK_64
uint8_t scales[2]; // scales, quantized with 8 bits
#else
uint8_t scales[K_SCALE_SIZE]; // scales, quantized with 6 bits
#endif
half d; // super-block scale
} block_q3_K;
//static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + K_SCALE_SIZE, "wrong q3_K block size/padding");
#define QR4_K 2
#define QI4_K (QK_K / (4*QR4_K))
#ifdef GGML_QKK_64
typedef struct {
half dm[2]; // super-block scales/mins
uint8_t scales[2]; // 4-bit block scales/mins
uint8_t qs[QK_K/2]; // 4--bit quants
} block_q4_K;
static_assert(sizeof(block_q4_K) == sizeof(half2) + QK_K/2 + 2, "wrong q4_K block size/padding");
#else
typedef struct {
half2 dm; // super-block scale for quantized scales/mins
uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
uint8_t qs[QK_K/2]; // 4--bit quants
} block_q4_K;
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_K block size/padding");
#endif
#define QR5_K 2
#define QI5_K (QK_K / (4*QR5_K))
#ifdef GGML_QKK_64
typedef struct {
half d; // super-block scale
int8_t scales[QK_K/16]; // block scales
uint8_t qh[QK_K/8]; // quants, high bit
uint8_t qs[QK_K/2]; // quants, low 4 bits
} block_q5_K;
static_assert(sizeof(block_q5_K) == sizeof(ggml_fp16_t) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding");
#else
typedef struct {
half2 dm; // super-block scale for quantized scales/mins
uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
uint8_t qh[QK_K/8]; // quants, high bit
uint8_t qs[QK_K/2]; // quants, low 4 bits
} block_q5_K;
static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
#endif
#define QR6_K 2
#define QI6_K (QK_K / (4*QR6_K))
typedef struct {
uint8_t ql[QK_K/2]; // quants, lower 4 bits
uint8_t qh[QK_K/4]; // quants, upper 2 bits
int8_t scales[QK_K/16]; // scales
half d; // delta
} block_q6_K;
static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_K block size/padding");
// In llama.cpp this is only used for intermediate quantization and dot products
typedef struct {
float d; // delta
int8_t qs[QK_K]; // quants
int16_t bsums[QK_K/16]; // sum of quants in groups of 16
} block_q8_K;
static_assert(sizeof(block_q8_K) == sizeof(float) + QK_K + QK_K/16*sizeof(int16_t), "wrong q8_K block size/padding");
template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x, int mmq_y, int nwarps,
allocate_tiles_cuda_t allocate_tiles, load_tiles_cuda_t load_tiles, int vdr, vec_dot_q_mul_mat_cuda_t vec_dot>
static __device__ __forceinline__ void mul_mat_q(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
const block_q_t * x = (const block_q_t *) vx;
const block_q8_1 * y = (const block_q8_1 *) vy;
const int blocks_per_row_x = ncols_x / qk;
const int blocks_per_col_y = nrows_y / QK8_1;
const int blocks_per_warp = WARP_SIZE / qi;
const int & ncols_dst = ncols_y;
const int row_dst_0 = blockIdx.x*mmq_y;
const int & row_x_0 = row_dst_0;
const int col_dst_0 = blockIdx.y*mmq_x;
const int & col_y_0 = col_dst_0;
int * tile_x_ql = nullptr;
half2 * tile_x_dm = nullptr;
int * tile_x_qh = nullptr;
int * tile_x_sc = nullptr;
allocate_tiles(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc);
__shared__ int tile_y_qs[mmq_x * WARP_SIZE];
__shared__ half2 tile_y_ds[mmq_x * WARP_SIZE/QI8_1];
float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {{0.0f}};
for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) {
load_tiles(x + row_x_0*blocks_per_row_x + ib0, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc,
threadIdx.y, nrows_x-row_x_0-1, threadIdx.x, blocks_per_row_x);
#pragma unroll
for (int ir = 0; ir < qr; ++ir) {
const int kqs = ir*WARP_SIZE + threadIdx.x;
const int kbxd = kqs / QI8_1;
#pragma unroll
for (int i = 0; i < mmq_x; i += nwarps) {
const int col_y_eff = min(col_y_0 + threadIdx.y + i, ncols_y-1); // to prevent out-of-bounds memory accesses
const block_q8_1 * by0 = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + kbxd];
const int index_y = (threadIdx.y + i) * WARP_SIZE + kqs % WARP_SIZE;
tile_y_qs[index_y] = get_int_from_int8_aligned(by0->qs, threadIdx.x % QI8_1);
}
#pragma unroll
for (int ids0 = 0; ids0 < mmq_x; ids0 += nwarps * QI8_1) {
const int ids = (ids0 + threadIdx.y * QI8_1 + threadIdx.x / (WARP_SIZE/QI8_1)) % mmq_x;
const int kby = threadIdx.x % (WARP_SIZE/QI8_1);
const int col_y_eff = min(col_y_0 + ids, ncols_y-1);
// if the sum is not needed it's faster to transform the scale to f32 ahead of time
const half2 * dsi_src = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + ir*(WARP_SIZE/QI8_1) + kby].ds;
half2 * dsi_dst = &tile_y_ds[ids * (WARP_SIZE/QI8_1) + kby];
if (need_sum) {
*dsi_dst = *dsi_src;
} else {
float * dfi_dst = (float *) dsi_dst;
*dfi_dst = __low2half(*dsi_src);
}
}
__syncthreads();
// #pragma unroll // unrolling this loop causes too much register pressure
for (int k = ir*WARP_SIZE/qr; k < (ir+1)*WARP_SIZE/qr; k += vdr) {
#pragma unroll
for (int j = 0; j < mmq_x; j += nwarps) {
#pragma unroll
for (int i = 0; i < mmq_y; i += WARP_SIZE) {
sum[i/WARP_SIZE][j/nwarps] += vec_dot(
tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, tile_y_qs, tile_y_ds,
threadIdx.x + i, threadIdx.y + j, k);
}
}
}
__syncthreads();
}
}
#pragma unroll
for (int j = 0; j < mmq_x; j += nwarps) {
const int col_dst = col_dst_0 + j + threadIdx.y;
if (col_dst >= ncols_dst) {
return;
}
#pragma unroll
for (int i = 0; i < mmq_y; i += WARP_SIZE) {
const int row_dst = row_dst_0 + threadIdx.x + i;
if (row_dst >= nrows_dst) {
continue;
}
dst[col_dst*nrows_dst + row_dst] = sum[i/WARP_SIZE][j/nwarps];
}
}
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_0(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
(void)x_qh; (void)x_sc;
const int kbx = k / QI4_0;
const int kqsx = k % QI4_0;
const block_q4_0 * bx0 = (const block_q4_0 *) vx;
float * x_dmf = (float *) x_dm;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + i_offset;
if (need_check) {
i = min(i, i_max);
}
const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx;
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
// x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx] = bxi->d;
}
const int blocks_per_tile_x_row = WARP_SIZE / QI4_0;
const int kbxd = k % blocks_per_tile_x_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) {
int i = i0 + i_offset * QI4_0 + k / blocks_per_tile_x_row;
if (need_check) {
i = min(i, i_max);
}
const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbxd;
x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd] = bxi->d;
}
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_1(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps);
GGML_CUDA_ASSUME(k >= 0);
GGML_CUDA_ASSUME(k < WARP_SIZE);
const int kbx = k / QI4_1;
const int kqsx = k % QI4_1;
const block_q4_1 * bx0 = (const block_q4_1 *) vx;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + i_offset;
if (need_check) {
i = min(i, i_max);
}
const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbx;
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
}
const int blocks_per_tile_x_row = WARP_SIZE / QI4_1;
const int kbxd = k % blocks_per_tile_x_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) {
int i = i0 + i_offset * QI4_1 + k / blocks_per_tile_x_row;
if (need_check) {
i = min(i, i_max);
}
const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbxd;
x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm;
}
}
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
(void)x_qh; (void)x_sc;
__shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
__shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI4_0) + mmq_y/QI4_0];
*x_ql = tile_x_qs;
*x_dm = (half2 *) tile_x_d;
}
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
__shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + + mmq_y];
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_1) + mmq_y/QI4_1];
*x_ql = tile_x_qs;
*x_dm = tile_x_dm;
}
static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
const block_q4_0 * x = (const block_q4_0 *) vx;
const dfloat d = x[ib].d;
const int vui = x[ib].qs[iqs];
v.x = vui & 0xF;
v.y = vui >> 4;
#ifdef GGML_CUDA_F16
v = __hsub2(v, {8.0f, 8.0f});
v = __hmul2(v, {d, d});
#else
v.x = (v.x - 8.0f) * d;
v.y = (v.y - 8.0f) * d;
#endif // GGML_CUDA_F16
}
static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
const block_q4_1 * x = (const block_q4_1 *) vx;
const dfloat d = __low2half(x[ib].dm);
const dfloat m = __high2half(x[ib].dm);
const int vui = x[ib].qs[iqs];
v.x = vui & 0xF;
v.y = vui >> 4;
#ifdef GGML_CUDA_F16
v = __hmul2(v, {d, d});
v = __hadd2(v, {m, m});
#else
v.x = (v.x * d) + m;
v.y = (v.y * d) + m;
#endif // GGML_CUDA_F16
}
static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
const block_q5_0 * x = (const block_q5_0 *) vx;
const dfloat d = x[ib].d;
uint32_t qh;
memcpy(&qh, x[ib].qh, sizeof(qh));
const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
#ifdef GGML_CUDA_F16
v = __hsub2(v, {16.0f, 16.0f});
v = __hmul2(v, {d, d});
#else
v.x = (v.x - 16.0f) * d;
v.y = (v.y - 16.0f) * d;
#endif // GGML_CUDA_F16
}
static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
const block_q5_1 * x = (const block_q5_1 *) vx;
const dfloat d = __low2half(x[ib].dm);
const dfloat m = __high2half(x[ib].dm);
uint32_t qh;
memcpy(&qh, x[ib].qh, sizeof(qh));
const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
#ifdef GGML_CUDA_F16
v = __hmul2(v, {d, d});
v = __hadd2(v, {m, m});
#else
v.x = (v.x * d) + m;
v.y = (v.y * d) + m;
#endif // GGML_CUDA_F16
}
static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
const block_q8_0 * x = (const block_q8_0 *) vx;
const dfloat d = x[ib].d;
v.x = x[ib].qs[iqs + 0];
v.y = x[ib].qs[iqs + 1];
#ifdef GGML_CUDA_F16
v = __hmul2(v, {d, d});
#else
v.x *= d;
v.y *= d;
#endif // GGML_CUDA_F16
}
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
static __device__ void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int k) {
const int i = 2*(blockDim.x*blockIdx.x + threadIdx.x);
if (i >= k) {
return;
}
const int ib = i/qk; // block index
const int iqs = (i%qk)/qr; // quant index
const int iybs = i - i%qk; // y block start index
const int y_offset = qr == 1 ? 1 : qk/2;
// dequantize
dfloat2 v;
dequantize_kernel(vx, ib, iqs, v);
y[iybs + iqs + 0] = v.x;
y[iybs + iqs + y_offset] = v.y;
}
extern "C" __global__ void dequantize_block_q4_0(const void * __restrict__ vx, float * __restrict__ yy, int nb32) {
const int i = blockIdx.x;
// assume 32 threads
const int tid = threadIdx.x;
const int il = tid/8;
const int ir = tid%8;
const int ib = 8*i + ir;
if (ib >= nb32) {
return;
}
float * y = yy + 256*i + 32*ir + 4*il;
const block_q4_0 * x = (const block_q4_0 *)vx + ib;
const float d = __half2float(x->d);
const float dm = -8*d;
const uint8_t * q = x->qs + 4*il;
for (int l = 0; l < 4; ++l) {
y[l+ 0] = d * (q[l] & 0xF) + dm;
y[l+16] = d * (q[l] >> 4) + dm;
}
}
extern "C" __global__ void dequantize_block_q4_1(const void * __restrict__ vx, float * __restrict__ yy, int nb32) {
const int i = blockIdx.x;
// assume 32 threads
const int tid = threadIdx.x;
const int il = tid/8;
const int ir = tid%8;
const int ib = 8*i + ir;
if (ib >= nb32) {
return;
}
float * y = yy + 256*i + 32*ir + 4*il;
const block_q4_1 * x = (const block_q4_1 *)vx + ib;
const float2 d = __half22float2(x->dm);
const uint8_t * q = x->qs + 4*il;
for (int l = 0; l < 4; ++l) {
y[l+ 0] = d.x * (q[l] & 0xF) + d.y;
y[l+16] = d.x * (q[l] >> 4) + d.y;
}
}
//================================== k-quants
extern "C" __global__ void dequantize_block_q2_K(const void * __restrict__ vx, float * __restrict__ yy) {
const int i = blockIdx.x;
const block_q2_K * x = (const block_q2_K *) vx;
const int tid = threadIdx.x;
#if QK_K == 256
const int n = tid/32;
const int l = tid - 32*n;
const int is = 8*n + l/16;
const uint8_t q = x[i].qs[32*n + l];
float * y = yy + i*QK_K + 128*n;
float dall = __low2half(x[i].dm);
float dmin = __high2half(x[i].dm);
y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
#else
const int is = tid/16; // 0 or 1
const int il = tid%16; // 0...15
const uint8_t q = x[i].qs[il] >> (2*is);
float * y = yy + i*QK_K + 16*is + il;
float dall = __low2half(x[i].dm);
float dmin = __high2half(x[i].dm);
y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
#endif
}
extern "C" __global__ void dequantize_block_q3_K(const void * __restrict__ vx, float * __restrict__ yy) {
const int i = blockIdx.x;
const block_q3_K * x = (const block_q3_K *) vx;
#if QK_K == 256
const int r = threadIdx.x/4;
const int tid = r/2;
const int is0 = r%2;
const int l0 = 16*is0 + 4*(threadIdx.x%4);
const int n = tid / 4;
const int j = tid - 4*n;
uint8_t m = 1 << (4*n + j);
int is = 8*n + 2*j + is0;
int shift = 2*j;
int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
is < 8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
is < 12 ? (x[i].scales[is-8] >> 4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
(x[i].scales[is-8] >> 4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
float d_all = x[i].d;
float dl = d_all * (us - 32);
float * y = yy + i*QK_K + 128*n + 32*j;
const uint8_t * q = x[i].qs + 32*n;
const uint8_t * hm = x[i].hmask;
for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
#else
const int tid = threadIdx.x;
const int is = tid/16; // 0 or 1
const int il = tid%16; // 0...15
const int im = il/8; // 0...1
const int in = il%8; // 0...7
float * y = yy + i*QK_K + 16*is + il;
const uint8_t q = x[i].qs[il] >> (2*is);
const uint8_t h = x[i].hmask[in] >> (2*is + im);
const float d = (float)x[i].d;
if (is == 0) {
y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
} else {
y[ 0] = d * ((x[i].scales[0] >> 4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
y[32] = d * ((x[i].scales[1] >> 4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
}
#endif
}
#if QK_K == 256
static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
if (j < 4) {
d = q[j] & 63; m = q[j + 4] & 63;
} else {
d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
}
}
#endif
extern "C" __global__ void dequantize_block_q4_K(const void * __restrict__ vx, float * __restrict__ yy) {
const block_q4_K * x = (const block_q4_K *) vx;
const int i = blockIdx.x;
#if QK_K == 256
// assume 32 threads
const int tid = threadIdx.x;
const int il = tid/8;
const int ir = tid%8;
const int is = 2*il;
const int n = 4;
float * y = yy + i*QK_K + 64*il + n*ir;
const float dall = __low2half(x[i].dm);
const float dmin = __high2half(x[i].dm);
const uint8_t * q = x[i].qs + 32*il + n*ir;
uint8_t sc, m;
get_scale_min_k4(is + 0, x[i].scales, sc, m);
const float d1 = dall * sc; const float m1 = dmin * m;
get_scale_min_k4(is + 1, x[i].scales, sc, m);
const float d2 = dall * sc; const float m2 = dmin * m;
for (int l = 0; l < n; ++l) {
y[l + 0] = d1 * (q[l] & 0xF) - m1;
y[l +32] = d2 * (q[l] >> 4) - m2;
}
#else
const int tid = threadIdx.x;
const uint8_t * q = x[i].qs;
float * y = yy + i*QK_K;
const float d = (float)x[i].dm[0];
const float m = (float)x[i].dm[1];
y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >> 4) - m * (x[i].scales[1] >> 4);
#endif
}
extern "C" __global__ void dequantize_block_q5_K(const void * __restrict__ vx, float * __restrict__ yy) {
const block_q5_K * x = (const block_q5_K *) vx;
const int i = blockIdx.x;
#if QK_K == 256
// assume 64 threads - this is very slightly better than the one below
const int tid = threadIdx.x;
const int il = tid/16; // il is in 0...3
const int ir = tid%16; // ir is in 0...15
const int is = 2*il; // is is in 0...6
float * y = yy + i*QK_K + 64*il + 2*ir;
const float dall = __low2half(x[i].dm);
const float dmin = __high2half(x[i].dm);
const uint8_t * ql = x[i].qs + 32*il + 2*ir;
const uint8_t * qh = x[i].qh + 2*ir;
uint8_t sc, m;
get_scale_min_k4(is + 0, x[i].scales, sc, m);
const float d1 = dall * sc; const float m1 = dmin * m;
get_scale_min_k4(is + 1, x[i].scales, sc, m);
const float d2 = dall * sc; const float m2 = dmin * m;
uint8_t hm = 1 << (2*il);
y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
hm <<= 1;
y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
#else
const int tid = threadIdx.x;
const uint8_t q = x[i].qs[tid];
const int im = tid/8; // 0...3
const int in = tid%8; // 0...7
const int is = tid/16; // 0 or 1
const uint8_t h = x[i].qh[in] >> im;
const float d = x[i].d;
float * y = yy + i*QK_K + tid;
y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
y[32] = d * x[i].scales[is+2] * ((q >> 4) - ((h >> 4) & 1 ? 0 : 16));
#endif
}
extern "C" __global__ void dequantize_block_q6_K(const void * __restrict__ vx, float * __restrict__ yy) {
const block_q6_K * x = (const block_q6_K *) vx;
const int i = blockIdx.x;
#if QK_K == 256
// assume 64 threads - this is very slightly better than the one below
const int tid = threadIdx.x;
const int ip = tid/32; // ip is 0 or 1
const int il = tid - 32*ip; // 0...32
const int is = 8*ip + il/16;
float * y = yy + i*QK_K + 128*ip + il;
const float d = x[i].d;
const uint8_t * ql = x[i].ql + 64*ip + il;
const uint8_t qh = x[i].qh[32*ip + il];
const int8_t * sc = x[i].scales + is;
y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
#else
// assume 32 threads
const int tid = threadIdx.x;
const int ip = tid/16; // 0 or 1
const int il = tid - 16*ip; // 0...15
float * y = yy + i*QK_K + 16*ip + il;
const float d = x[i].d;
const uint8_t ql = x[i].ql[16*ip + il];
const uint8_t qh = x[i].qh[il] >> (2*ip);
const int8_t * sc = x[i].scales;
y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
y[32] = d * sc[ip+2] * ((int8_t)((ql >> 4) | (((qh >> 4) & 3) << 4)) - 32);
#endif
}
extern "C" __global__ void dequantize_block_q8_0(const void * __restrict__ vx, float * __restrict__ yy, int nb32) {
const int i = blockIdx.x;
// assume 32 threads
const int tid = threadIdx.x;
const int il = tid/8;
const int ir = tid%8;
const int ib = 8*i + ir;
if (ib >= nb32) {
return;
}
float * y = yy + 256*i + 32*ir + 8*il;
const block_q8_0 * x = (const block_q8_0 *)vx + ib;
const float d = __half2float(x->d);
const int8_t * q = x->qs + 8*il;
for (int l = 0; l < 8; ++l) {
y[l] = d * q[l];
}
}
extern "C" __global__ void dequantize_block_q8_K(const void * __restrict__ vx, float * __restrict__ yy) {
const block_q8_K * x = (const block_q8_K *) vx;
const int i = blockIdx.x;
#if QK_K == 256
// assume 32 threads
const int tid = threadIdx.x;
const int il = tid/8;
const int ir = tid%8;
const int n = 8;
float * y = yy + i*QK_K + 64*il + n*ir;
const int8_t * q = x[i].qs + 64*il + n*ir;
for (int l = 0; l < n; ++l) {
y[l] = q[l] * x[i].d;
}
#else
const int tid = threadIdx.x;
const uint8_t * q = x[i].qs;
float * y = yy + i*QK_K;
y[tid] = x[i].d * x[i].scales[0];
#endif
}
extern "C" __global__ void dequantize_block_q5_0(const void * __restrict__ vx, float * __restrict__ yy, int nb32) {
return dequantize_block<QK5_0, QR5_0, dequantize_q5_0>(vx, yy, nb32);
}
extern "C" __global__ void dequantize_block_q5_1(const void * __restrict__ vx, float * __restrict__ yy, int nb32) {
return dequantize_block<QK5_1, QR5_1, dequantize_q5_1>(vx, yy, nb32);
}
template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
static __device__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
// qk = quantized weights per x block
// qr = number of quantized weights per data value in x block
const int row = blockIdx.x*blockDim.y + threadIdx.y;
if (row >= nrows) {
return;
}
const int tid = threadIdx.x;
const int iter_stride = 2*GGML_CUDA_DMMV_X;
const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
const int y_offset = qr == 1 ? 1 : qk/2;
// partial sum for each thread
#ifdef GGML_CUDA_F16
half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
#else
float tmp = 0.0f;
#endif // GGML_CUDA_F16
for (int i = 0; i < ncols; i += iter_stride) {
const int col = i + vals_per_iter*tid;
const int ib = (row*ncols + col)/qk; // x block index
const int iqs = (col%qk)/qr; // x quant index
const int iybs = col - col%qk; // y block start index
// processing >2 values per i iter is faster for fast GPUs
#pragma unroll
for (int j = 0; j < vals_per_iter; j += 2) {
// process 2 vals per j iter
// dequantize
// for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
dfloat2 v;
dequantize_kernel(vx, ib, iqs + j/qr, v);
// matrix multiplication
// for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
#ifdef GGML_CUDA_F16
tmp += __hmul2(v, {
y[iybs + iqs + j/qr + 0],
y[iybs + iqs + j/qr + y_offset]
});
#else
tmp += v.x * y[iybs + iqs + j/qr + 0];
tmp += v.y * y[iybs + iqs + j/qr + y_offset];
#endif // GGML_CUDA_F16
}
}
// sum up partial sums and write back result
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
}
if (tid == 0) {
#ifdef GGML_CUDA_F16
dst[row] = tmp.x + tmp.y;
#else
dst[row] = tmp;
#endif // GGML_CUDA_F16
}
}
extern "C" __global__ void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows) {
dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>(vx, y, dst, ncols, nrows);
}
extern "C" __global__ void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows) {
dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>(vx, y, dst, ncols, nrows);
}
extern "C" __global__ void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows) {
dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>(vx, y, dst, ncols, nrows);
}
extern "C" __global__ void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows) {
dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>(vx, y, dst, ncols, nrows);
}
extern "C" __global__ void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows) {
dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>(vx, y, dst, ncols, nrows);
}
extern "C" __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
const int row = blockIdx.x*blockDim.y + threadIdx.y;
if (row > nrows) return;
const int num_blocks_per_row = ncols / QK_K;
const int ib0 = row*num_blocks_per_row;
const block_q2_K * x = (const block_q2_K *)vx + ib0;
float tmp = 0; // partial sum for thread in warp
#if QK_K == 256
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...15
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
const int step = 16/K_QUANTS_PER_ITERATION;
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
const int in = tid - step*im; // 0...15 or 0...7
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
const int q_offset = 32*im + l0;
const int s_offset = 8*im;
const int y_offset = 128*im + l0;
uint32_t aux[4];
const uint8_t * d = (const uint8_t *)aux;
const uint8_t * m = (const uint8_t *)(aux + 2);
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
const float * y = yy + i * QK_K + y_offset;
const uint8_t * q = x[i].qs + q_offset;
const float dall = __low2half(x[i].dm);
const float dmin = __high2half(x[i].dm);
const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
aux[0] = a[0] & 0x0f0f0f0f;
aux[1] = a[1] & 0x0f0f0f0f;
aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
float sum1 = 0, sum2 = 0;
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
+ y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
+ y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
+ y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
+ y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
+ y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
+ y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
+y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
+ y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
}
tmp += dall * sum1 - dmin * sum2;
}
#else
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
const int offset = tid * K_QUANTS_PER_ITERATION;
uint32_t uaux[2];
const uint8_t * d = (const uint8_t *)uaux;
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
const float * y = yy + i * QK_K + offset;
const uint8_t * q = x[i].qs + offset;
const uint32_t * s = (const uint32_t *)x[i].scales;
uaux[0] = s[0] & 0x0f0f0f0f;
uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;
const float2 dall = __half22float2(x[i].dm);
float sum1 = 0, sum2 = 0;
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
const uint8_t ql = q[l];
sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3)
+ y[l+16] * d[1] * ((ql >> 2) & 3)
+ y[l+32] * d[2] * ((ql >> 4) & 3)
+ y[l+48] * d[3] * ((ql >> 6) & 3);
sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7];
}
tmp += dall.x * sum1 - dall.y * sum2;
}
#endif
// sum up partial sums and write back result
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
}
if (threadIdx.x == 0) {
dst[row] = tmp;
}
}
extern "C" __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
const int row = blockIdx.x*blockDim.y + threadIdx.y;
if (row > nrows) return;
const int num_blocks_per_row = ncols / QK_K;
const int ib0 = row*num_blocks_per_row;
const block_q3_K * x = (const block_q3_K *)vx + ib0;
float tmp = 0; // partial sum for thread in warp
#if QK_K == 256
const uint16_t kmask1 = 0x0303;
const uint16_t kmask2 = 0x0f0f;
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
const int step = 16/K_QUANTS_PER_ITERATION;
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
const int in = tid - step*im; // 0....15 or 0...7
const uint8_t m = 1 << (4*im);
const int l0 = n*in; // 0...15 or 0...14 in steps of 2
const int q_offset = 32*im + l0;
const int y_offset = 128*im + l0;
uint16_t utmp[4];
const int8_t * s = (const int8_t *)utmp;
const uint16_t s_shift = 4*im;
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
const float * y = yy + i * QK_K + y_offset;
const uint8_t * q = x[i].qs + q_offset;
const uint8_t * h = x[i].hmask + l0;
const uint16_t * a = (const uint16_t *)x[i].scales;
utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
const float d = x[i].d;
float sum = 0;
for (int l = 0; l < n; ++l) {
sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
+ y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
+ y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
+ y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
+ y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
+ y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
+ y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
}
tmp += d * sum;
}
#else
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
const int offset = tid * K_QUANTS_PER_ITERATION; // 0...15 or 0...14
const int in = offset/8; // 0 or 1
const int im = offset%8; // 0...7
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
const float * y = yy + i * QK_K + offset;
const uint8_t * q = x[i].qs + offset;
const uint8_t * s = x[i].scales;
const float dall = (float)x[i].d;
float sum = 0;
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
const uint8_t hl = x[i].hmask[im+l] >> in;
const uint8_t ql = q[l];
sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4))
+ y[l+16] * dall * ((s[0] >> 4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4))
+ y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4))
+ y[l+48] * dall * ((s[1] >> 4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4));
}
tmp += sum;
}
#endif
// sum up partial sums and write back result
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
}
if (threadIdx.x == 0) {
dst[row] = tmp;
}
}
extern "C" __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
const int row = blockIdx.x*blockDim.y + threadIdx.y;
if (row > nrows) return;
const int num_blocks_per_row = ncols / QK_K;
const int ib0 = row*num_blocks_per_row;
const block_q4_K * x = (const block_q4_K *)vx + ib0;
#if QK_K == 256
const uint16_t kmask1 = 0x3f3f;
const uint16_t kmask2 = 0x0f0f;
const uint16_t kmask3 = 0xc0c0;
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
const int step = 8/K_QUANTS_PER_ITERATION; // 8 or 4
const int il = tid/step; // 0...3
const int ir = tid - step*il; // 0...7 or 0...3
const int n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
const int in = il%2;
const int l0 = n*(2*ir + in);
const int q_offset = 32*im + l0;
const int y_offset = 64*im + l0;
uint16_t aux[4];
const uint8_t * sc = (const uint8_t *)aux;
#if K_QUANTS_PER_ITERATION == 2
uint32_t q32[4];
const uint8_t * q4 = (const uint8_t *)q32;
#else
uint16_t q16[4];
const uint8_t * q4 = (const uint8_t *)q16;
#endif
float tmp = 0; // partial sum for thread in warp
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
const float * y1 = yy + i*QK_K + y_offset;
const float * y2 = y1 + 128;
const float dall = __low2half(x[i].dm);
const float dmin = __high2half(x[i].dm);
const uint16_t * a = (const uint16_t *)x[i].scales;
aux[0] = a[im+0] & kmask1;
aux[1] = a[im+2] & kmask1;
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
#if K_QUANTS_PER_ITERATION == 2
const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
const uint32_t * q2 = q1 + 16;
q32[0] = q1[0] & 0x0f0f0f0f;
q32[1] = q1[0] & 0xf0f0f0f0;
q32[2] = q2[0] & 0x0f0f0f0f;
q32[3] = q2[0] & 0xf0f0f0f0;
float4 s = {0.f, 0.f, 0.f, 0.f};
float smin = 0;
for (int l = 0; l < 4; ++l) {
s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+ 4];
s.z += y2[l] * q4[l+8]; s.w += y2[l+32] * q4[l+12];
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
}
tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
#else
const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
const uint16_t * q2 = q1 + 32;
q16[0] = q1[0] & 0x0f0f;
q16[1] = q1[0] & 0xf0f0;
q16[2] = q2[0] & 0x0f0f;
q16[3] = q2[0] & 0xf0f0;
float4 s = {0.f, 0.f, 0.f, 0.f};
float smin = 0;
for (int l = 0; l < 2; ++l) {
s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
}
tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
#endif
}
#else
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
const int step = tid * K_QUANTS_PER_ITERATION;
uint16_t aux16[2];
const uint8_t * s = (const uint8_t *)aux16;
float tmp = 0;
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
const uint8_t * q = x[i].qs + step;
const float * y = yy + i*QK_K + step;
const uint16_t * a = (const uint16_t *)x[i].scales;
aux16[0] = a[0] & 0x0f0f;
aux16[1] = (a[0] >> 4) & 0x0f0f;
const float d = (float)x[i].dm[0];
const float m = (float)x[i].dm[1];
float sum = 0.f;
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
+ y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2])
+ y[j+32] * (d * s[1] * (q[j+ 0] >> 4) - m * s[3])
+ y[j+48] * (d * s[1] * (q[j+16] >> 4) - m * s[3]);
}
tmp += sum;
}
#endif
// sum up partial sums and write back result
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
}
if (tid == 0) {
dst[row] = tmp;
}
}
extern "C" __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols) {
const int row = blockIdx.x;
const int num_blocks_per_row = ncols / QK_K;
const int ib0 = row*num_blocks_per_row;
const block_q5_K * x = (const block_q5_K *)vx + ib0;
float tmp = 0; // partial sum for thread in warp
#if QK_K == 256
const uint16_t kmask1 = 0x3f3f;
const uint16_t kmask2 = 0x0f0f;
const uint16_t kmask3 = 0xc0c0;
const int tid = threadIdx.x/2; // 0...15
const int ix = threadIdx.x%2;
const int il = tid/4; // 0...3
const int ir = tid - 4*il;// 0...3
const int n = 2;
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
const int in = il%2;
const int l0 = n*(2*ir + in);
const int q_offset = 32*im + l0;
const int y_offset = 64*im + l0;
const uint8_t hm1 = 1 << (2*im);
const uint8_t hm2 = hm1 << 4;
uint16_t aux[4];
const uint8_t * sc = (const uint8_t *)aux;
uint16_t q16[8];
const uint8_t * q4 = (const uint8_t *)q16;
for (int i = ix; i < num_blocks_per_row; i += 2) {
const uint8_t * ql1 = x[i].qs + q_offset;
const uint8_t * qh = x[i].qh + l0;
const float * y1 = yy + i*QK_K + y_offset;
const float * y2 = y1 + 128;
const float dall = __low2half(x[i].dm);
const float dmin = __high2half(x[i].dm);
const uint16_t * a = (const uint16_t *)x[i].scales;
aux[0] = a[im+0] & kmask1;
aux[1] = a[im+2] & kmask1;
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
float4 sum = {0.f, 0.f, 0.f, 0.f};
float smin = 0;
const uint16_t * q1 = (const uint16_t *)ql1;
const uint16_t * q2 = q1 + 32;
q16[0] = q1[0] & 0x0f0f;
q16[1] = q1[8] & 0x0f0f;
q16[2] = (q1[0] >> 4) & 0x0f0f;
q16[3] = (q1[8] >> 4) & 0x0f0f;
q16[4] = q2[0] & 0x0f0f;
q16[5] = q2[8] & 0x0f0f;
q16[6] = (q2[0] >> 4) & 0x0f0f;
q16[7] = (q2[8] >> 4) & 0x0f0f;
for (int l = 0; l < n; ++l) {
sum.x += y1[l+ 0] * (q4[l +0] + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
+ y1[l+16] * (q4[l +2] + (qh[l+16] & (hm1 << 0) ? 16 : 0));
sum.y += y1[l+32] * (q4[l +4] + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
+ y1[l+48] * (q4[l +6] + (qh[l+16] & (hm1 << 1) ? 16 : 0));
sum.z += y2[l+ 0] * (q4[l +8] + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
+ y2[l+16] * (q4[l+10] + (qh[l+16] & (hm2 << 0) ? 16 : 0));
sum.w += y2[l+32] * (q4[l+12] + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
+ y2[l+48] * (q4[l+14] + (qh[l+16] & (hm2 << 1) ? 16 : 0));
smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
+ (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
}
tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
}
#else
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
const int step = tid * K_QUANTS_PER_ITERATION;
const int im = step/8;
const int in = step%8;
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
const uint8_t * q = x[i].qs + step;
const int8_t * s = x[i].scales;
const float * y = yy + i*QK_K + step;
const float d = x[i].d;
float sum = 0.f;
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
const uint8_t h = x[i].qh[in+j] >> im;
sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16))
+ y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16))
+ y[j+32] * d * s[2] * ((q[j+ 0] >> 4) - ((h >> 4) & 1 ? 0 : 16))
+ y[j+48] * d * s[3] * ((q[j+16] >> 4) - ((h >> 6) & 1 ? 0 : 16));
}
tmp += sum;
}
#endif
// sum up partial sums and write back result
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
}
if (threadIdx.x == 0) {
dst[row] = tmp;
}
}
extern "C" __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
const int row = blockIdx.x*blockDim.y + threadIdx.y;
if (row > nrows) return;
const int num_blocks_per_row = ncols / QK_K;
const int ib0 = row*num_blocks_per_row;
const block_q6_K * x = (const block_q6_K *)vx + ib0;
#if QK_K == 256
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
const int in = tid - step*im; // 0...15 or 0...7
#if K_QUANTS_PER_ITERATION == 1
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
const int is = 0;
#else
const int l0 = 4 * in; // 0, 4, 8, ..., 28
const int is = in / 4;
#endif
const int ql_offset = 64*im + l0;
const int qh_offset = 32*im + l0;
const int s_offset = 8*im + is;
const int y_offset = 128*im + l0;
float tmp = 0; // partial sum for thread in warp
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
const float * y = yy + i * QK_K + y_offset;
const uint8_t * ql = x[i].ql + ql_offset;
const uint8_t * qh = x[i].qh + qh_offset;
const int8_t * s = x[i].scales + s_offset;
const float d = x[i].d;
#if K_QUANTS_PER_ITERATION == 1
float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
+ y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
+ y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
+ y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
+ y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
+ y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
+ y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
+y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
tmp += sum;
#else
float sum = 0;
for (int l = 0; l < 4; ++l) {
sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
+ y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
+ y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
+ y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
}
tmp += sum;
#endif
}
#else
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...7
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0...3
const int step = tid * K_QUANTS_PER_ITERATION;
float tmp = 0; // partial sum for thread in warp
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
const float * y = yy + i * QK_K + step;
const uint8_t * ql = x[i].ql + step;
const uint8_t * qh = x[i].qh + step;
const int8_t * s = x[i].scales;
const float d = x[i+0].d;
float sum = 0;
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32)
+ y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32)
+ y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >> 4) | ((qh[j] & 0x30) >> 0)) - 32)
+ y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >> 4) | ((qh[j] & 0xc0) >> 2)) - 32);
}
tmp += sum;
}
#endif
// sum up partial sums and write back result
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
}
if (tid == 0) {
dst[row] = tmp;
}
}
// VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called
// MMVQ = mul_mat_vec_q, MMQ = mul_mat_q
#define VDR_Q4_0_Q8_1_MMVQ 2
#define VDR_Q4_0_Q8_1_MMQ 4
template <int vdr> static __device__ __forceinline__ float vec_dot_q4_0_q8_1_impl(
const int * v, const int * u, const float & d4, const half2 & ds8) {
int sumi = 0;
#pragma unroll
for (int i = 0; i < vdr; ++i) {
const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
// SIMD dot product of quantized values
sumi = __dp4a(vi0, u[2*i+0], sumi);
sumi = __dp4a(vi1, u[2*i+1], sumi);
}
const float2 ds8f = __half22float2(ds8);
// second part effectively subtracts 8 from each quant value
return d4 * (sumi * ds8f.x - (8*vdr/QI4_0) * ds8f.y);
}
#define VDR_Q4_1_Q8_1_MMVQ 2
#define VDR_Q4_1_Q8_1_MMQ 4
template <int vdr> static __device__ __forceinline__ float vec_dot_q4_1_q8_1_impl(
const int * v, const int * u, const half2 & dm4, const half2 & ds8) {
int sumi = 0;
#pragma unroll
for (int i = 0; i < vdr; ++i) {
const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
// SIMD dot product of quantized values
sumi = __dp4a(vi0, u[2*i+0], sumi);
sumi = __dp4a(vi1, u[2*i+1], sumi);
}
#ifdef GGML_CUDA_F16
const float2 tmp = __half22float2(__hmul2(dm4, ds8));
const float d4d8 = tmp.x;
const float m4s8 = tmp.y;
#else
const float2 dm4f = __half22float2(dm4);
const float2 ds8f = __half22float2(ds8);
const float d4d8 = dm4f.x * ds8f.x;
const float m4s8 = dm4f.y * ds8f.y;
#endif // GGML_CUDA_F16
// scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it
return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1));
}
#define VDR_Q5_0_Q8_1_MMVQ 2
#define VDR_Q5_0_Q8_1_MMQ 4
template <int vdr> static __device__ __forceinline__ float vec_dot_q5_0_q8_1_impl(
const int * vl, const int * vh, const int * u, const float & d5, const half2 & ds8) {
int sumi = 0;
#pragma unroll
for (int i = 0; i < vdr; ++i) {
int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
}
const float2 ds8f = __half22float2(ds8);
// second part effectively subtracts 16 from each quant value
return d5 * (sumi * ds8f.x - (16*vdr/QI5_0) * ds8f.y);
}
#define VDR_Q5_1_Q8_1_MMVQ 2
#define VDR_Q5_1_Q8_1_MMQ 4
template <int vdr> static __device__ __forceinline__ float vec_dot_q5_1_q8_1_impl(
const int * vl, const int * vh, const int * u, const half2 & dm5, const half2 & ds8) {
int sumi = 0;
#pragma unroll
for (int i = 0; i < vdr; ++i) {
int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
}
#ifdef GGML_CUDA_F16
const float2 tmp = __half22float2(__hmul2(dm5, ds8));
const float d5d8 = tmp.x;
const float m5s8 = tmp.y;
#else
const float2 dm5f = __half22float2(dm5);
const float2 ds8f = __half22float2(ds8);
const float d5d8 = dm5f.x * ds8f.x;
const float m5s8 = dm5f.y * ds8f.y;
#endif // GGML_CUDA_F16
// scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it
return sumi*d5d8 + m5s8 / (QI5_1 / vdr);
}
#define VDR_Q8_0_Q8_1_MMVQ 2
#define VDR_Q8_0_Q8_1_MMQ 8
template <int vdr> static __device__ __forceinline__ float vec_dot_q8_0_q8_1_impl(
const int * v, const int * u, const float & d8_0, const float & d8_1) {
int sumi = 0;
#pragma unroll
for (int i = 0; i < vdr; ++i) {
// SIMD dot product of quantized values
sumi = __dp4a(v[i], u[i], sumi);
}
return d8_0*d8_1 * sumi;
}
template <int vdr> static __device__ __forceinline__ float vec_dot_q8_1_q8_1_impl(
const int * v, const int * u, const half2 & dm8, const half2 & ds8) {
int sumi = 0;
#pragma unroll
for (int i = 0; i < vdr; ++i) {
// SIMD dot product of quantized values
sumi = __dp4a(v[i], u[i], sumi);
}
#ifdef GGML_CUDA_F16
const float2 tmp = __half22float2(__hmul2(dm8, ds8));
const float d8d8 = tmp.x;
const float m8s8 = tmp.y;
#else
const float2 dm8f = __half22float2(dm8);
const float2 ds8f = __half22float2(ds8);
const float d8d8 = dm8f.x * ds8f.x;
const float m8s8 = dm8f.y * ds8f.y;
#endif // GGML_CUDA_F16
// scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it
return sumi*d8d8 + m8s8 / (QI8_1 / vdr);
}
#define VDR_Q2_K_Q8_1_MMVQ 1
#define VDR_Q2_K_Q8_1_MMQ 2
// contiguous v/x values
static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq(
const int & v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
const half2 & dm2, const float * __restrict__ d8) {
float sumf_d = 0.0f;
float sumf_m = 0.0f;
#pragma unroll
for (int i = 0; i < QR2_K; ++i) {
const int sc = scales[2*i];
const int vi = (v >> (2*i)) & 0x03030303;
sumf_d += d8[i] * (__dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product
// fill int with 4x m
int m = sc >> 4;
m |= m << 8;
m |= m << 16;
sumf_m += d8[i] * __dp4a(m, u[i], 0); // multiply constant q2_K part with sum of q8_1 values
}
const float2 dm2f = __half22float2(dm2);
return dm2f.x*sumf_d - dm2f.y*sumf_m;
}
// contiguous u/y values
static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq(
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
const half2 & dm2, const float & d8) {
int sumi_d = 0;
int sumi_m = 0;
#pragma unroll
for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) {
int sumi_d_sc = 0;
const int sc = scales[i0 / (QI8_1/2)];
// fill int with 4x m
int m = sc >> 4;
m |= m << 8;
m |= m << 16;
#pragma unroll
for (int i = i0; i < i0 + QI8_1/2; ++i) {
sumi_d_sc = __dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product
sumi_m = __dp4a(m, u[i], sumi_m); // multiply sum of q8_1 values with m
}
sumi_d += sumi_d_sc * (sc & 0xF);
}
const float2 dm2f = __half22float2(dm2);
return d8 * (dm2f.x*sumi_d - dm2f.y*sumi_m);
}
#define VDR_Q3_K_Q8_1_MMVQ 1
#define VDR_Q3_K_Q8_1_MMQ 2
// contiguous v/x values
static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmvq(
const int & vl, const int & vh, const int * __restrict__ u, const uint8_t * __restrict__ scales,
const int & scale_offset, const float & d3, const float * __restrict__ d8) {
float sumf = 0.0f;
#pragma unroll
for (int i = 0; i < QR3_K; ++i) {
const int isc = scale_offset + 2*i;
const int isc_low = isc % (QK_K/32);
const int sc_shift_low = 4 * (isc / (QK_K/32));
const int sc_low = (scales[isc_low] >> sc_shift_low) & 0xF;
const int isc_high = isc % (QK_K/64);
const int sc_shift_high = 2 * (isc / (QK_K/64));
const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4;
const int sc = (sc_low | sc_high) - 32;
const int vil = (vl >> (2*i)) & 0x03030303;
const int vih = ((vh >> i) << 2) & 0x04040404;
const int vi = __vsubss4(vil, vih);
sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
}
return d3 * sumf;
}
// contiguous u/y values
static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq(
const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ scales,
const float & d3, const float & d8) {
int sumi = 0;
#pragma unroll
for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) {
int sumi_sc = 0;
for (int i = i0; i < i0 + QI8_1/2; ++i) {
sumi_sc = __dp4a(v[i], u[i], sumi_sc); // SIMD dot product
}
sumi += sumi_sc * scales[i0 / (QI8_1/2)];
}
return d3*d8 * sumi;
}
#define VDR_Q4_K_Q8_1_MMVQ 2
#define VDR_Q4_K_Q8_1_MMQ 8
// contiguous v/x values
static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq(
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
const uint8_t * __restrict__ m, const half2 & dm4, const float * __restrict__ d8) {
float sumf_d = 0.0f;
float sumf_m = 0.0f;
#pragma unroll
for (int i = 0; i < QR4_K; ++i) {
const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F;
const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F;
const int dot1 = __dp4a(v1i, u[2*i+1], __dp4a(v0i, u[2*i+0], 0)); // SIMD dot product
const int dot2 = __dp4a(0x01010101, u[2*i+1], __dp4a(0x01010101, u[2*i+0], 0)); // sum of u
sumf_d += d8[i] * (dot1 * sc[i]);
sumf_m += d8[i] * (dot2 * m[i]); // multiply constant part of q4_K with sum of q8_1 values
}
const float2 dm4f = __half22float2(dm4);
return dm4f.x*sumf_d - dm4f.y*sumf_m;
}
// contiguous u/y values
static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
float sumf_d = 0.0f;
float sumf_m = 0.0f;
#pragma unroll
for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) {
int sumi_d = 0;
#pragma unroll
for (int j = 0; j < QI8_1; ++j) {
sumi_d = __dp4a((v[j] >> (4*i)) & 0x0F0F0F0F, u[i*QI8_1 + j], sumi_d); // SIMD dot product
}
const float2 ds8f = __half22float2(ds8[i]);
sumf_d += ds8f.x * (sc[i] * sumi_d);
sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
}
const float2 dm4f = __half22float2(dm4);
return dm4f.x*sumf_d - dm4f.y*sumf_m;
}
#define VDR_Q5_K_Q8_1_MMVQ 2
#define VDR_Q5_K_Q8_1_MMQ 8
// contiguous v/x values
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq(
const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc,
const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) {
float sumf_d = 0.0f;
float sumf_m = 0.0f;
#pragma unroll
for (int i = 0; i < QR5_K; ++i) {
const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F;
const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F;
const int vh0i = ((vh[0] >> i) << 4) & 0x10101010;
const int vh1i = ((vh[1] >> i) << 4) & 0x10101010;
const int v0i = vl0i | vh0i;
const int v1i = vl1i | vh1i;
const int dot1 = __dp4a(v0i, u[2*i+0], __dp4a(v1i, u[2*i+1], 0)); // SIMD dot product
const int dot2 = __dp4a(0x01010101, u[2*i+0], __dp4a(0x01010101, u[2*i+1], 0)); // sum of u
sumf_d += d8[i] * (dot1 * sc[i]);
sumf_m += d8[i] * (dot2 * m[i]);
}
const float2 dm5f = __half22float2(dm5);
return dm5f.x*sumf_d - dm5f.y*sumf_m;
}
// contiguous u/y values
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq(
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
float sumf_d = 0.0f;
float sumf_m = 0.0f;
#pragma unroll
for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) {
int sumi_d = 0;
#pragma unroll
for (int j = 0; j < QI8_1; ++j) {
sumi_d = __dp4a(v[i*QI8_1 + j], u[i*QI8_1 + j], sumi_d); // SIMD dot product
}
const float2 ds8f = __half22float2(ds8[i]);
sumf_d += ds8f.x * (sc[i] * sumi_d);
sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
}
const float2 dm4f = __half22float2(dm4);
return dm4f.x*sumf_d - dm4f.y*sumf_m;
}
#define VDR_Q6_K_Q8_1_MMVQ 1
#define VDR_Q6_K_Q8_1_MMQ 8
// contiguous v/x values
static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmvq(
const int & vl, const int & vh, const int * __restrict__ u, const int8_t * __restrict__ scales,
const float & d, const float * __restrict__ d8) {
float sumf = 0.0f;
#pragma unroll
for (int i = 0; i < QR6_K; ++i) {
const int sc = scales[4*i];
const int vil = (vl >> (4*i)) & 0x0F0F0F0F;
const int vih = ((vh >> (4*i)) << 4) & 0x30303030;
const int vi = __vsubss4((vil | vih), 0x20202020); // vi = (vil | vih) - 32
sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
}
return d*sumf;
}
// contiguous u/y values
static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq(
const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ sc,
const float & d6, const float * __restrict__ d8) {
float sumf_d = 0.0f;
#pragma unroll
for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) {
int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale
#pragma unroll
for (int i = i0; i < i0 + 2; ++i) {
sumi_d.x = __dp4a(v[2*i+0], u[2*i+0], sumi_d.x); // SIMD dot product
sumi_d.x = __dp4a(v[2*i+1], u[2*i+1], sumi_d.x); // SIMD dot product
sumi_d.y = __dp4a(v[2*i+4], u[2*i+4], sumi_d.y); // SIMD dot product
sumi_d.y = __dp4a(v[2*i+5], u[2*i+5], sumi_d.y); // SIMD dot product
}
sumf_d += d8[i0/4] * (sc[i0/2+0]*sumi_d.x + sc[i0/2+1]*sumi_d.y);
}
return d6 * sumf_d;
}
static __device__ __forceinline__ float vec_dot_q4_0_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq;
int v[VDR_Q4_0_Q8_1_MMVQ];
int u[2*VDR_Q4_0_Q8_1_MMVQ];
#pragma unroll
for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) {
v[i] = get_int_from_uint8(bq4_0->qs, iqs + i);
u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_0);
}
return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMVQ>(v, u, bq4_0->d, bq8_1->ds);
}
static __device__ __forceinline__ float vec_dot_q4_1_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq;
int v[VDR_Q4_1_Q8_1_MMVQ];
int u[2*VDR_Q4_1_Q8_1_MMVQ];
#pragma unroll
for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) {
v[i] = get_int_from_uint8_aligned(bq4_1->qs, iqs + i);
u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_1);
}
return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMVQ>(v, u, bq4_1->dm, bq8_1->ds);
}
static __device__ __forceinline__ float vec_dot_q5_0_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq;
int vl[VDR_Q5_0_Q8_1_MMVQ];
int vh[VDR_Q5_0_Q8_1_MMVQ];
int u[2*VDR_Q5_0_Q8_1_MMVQ];
#pragma unroll
for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) {
vl[i] = get_int_from_uint8(bq5_0->qs, iqs + i);
vh[i] = get_int_from_uint8(bq5_0->qh, 0) >> (4 * (iqs + i));
u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_0);
}
return vec_dot_q5_0_q8_1_impl<VDR_Q5_0_Q8_1_MMVQ>(vl, vh, u, bq5_0->d, bq8_1->ds);
}
static __device__ __forceinline__ float vec_dot_q5_1_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq;
int vl[VDR_Q5_1_Q8_1_MMVQ];
int vh[VDR_Q5_1_Q8_1_MMVQ];
int u[2*VDR_Q5_1_Q8_1_MMVQ];
#pragma unroll
for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) {
vl[i] = get_int_from_uint8_aligned(bq5_1->qs, iqs + i);
vh[i] = get_int_from_uint8_aligned(bq5_1->qh, 0) >> (4 * (iqs + i));
u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_1);
}
return vec_dot_q5_1_q8_1_impl<VDR_Q5_1_Q8_1_MMVQ>(vl, vh, u, bq5_1->dm, bq8_1->ds);
}
static __device__ __forceinline__ float vec_dot_q8_0_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq;
int v[VDR_Q8_0_Q8_1_MMVQ];
int u[VDR_Q8_0_Q8_1_MMVQ];
#pragma unroll
for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) {
v[i] = get_int_from_int8(bq8_0->qs, iqs + i);
u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
}
return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d, __low2half(bq8_1->ds));
}
static __device__ __forceinline__ float vec_dot_q2_K_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
const block_q2_K * bq2_K = (const block_q2_K *) vbq;
const int bq8_offset = QR2_K * (iqs / QI8_1);
const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
const uint8_t * scales = bq2_K->scales + scale_offset;
const int v = get_int_from_uint8_aligned(bq2_K->qs, iqs);
int u[QR2_K];
float d8[QR2_K];
#pragma unroll
for (int i = 0; i < QR2_K; ++ i) {
u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
d8[i] = __low2float(bq8_1[bq8_offset + i].ds);
}
return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8);
}
static __device__ __forceinline__ float vec_dot_q3_K_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
const block_q3_K * bq3_K = (const block_q3_K *) vbq;
const int bq8_offset = QR3_K * (iqs / (QI3_K/2));
const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
const float d = bq3_K->d;
const int vl = get_int_from_uint8(bq3_K->qs, iqs);
// invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
const int vh = ~get_int_from_uint8(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset;
int u[QR3_K];
float d8[QR3_K];
#pragma unroll
for (int i = 0; i < QR3_K; ++i) {
u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
d8[i] = __low2float(bq8_1[bq8_offset + i].ds);
}
return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8);
}
static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
#ifndef GGML_QKK_64
const block_q4_K * bq4_K = (const block_q4_K *) vbq;
int v[2];
int u[2*QR4_K];
float d8[QR4_K];
// iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6
const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2));
// iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12
// iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44
// iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76
// iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108
const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
v[0] = q4[0];
v[1] = q4[4];
const uint16_t * scales = (const uint16_t *)bq4_K->scales;
uint16_t aux[2];
const int j = bq8_offset/2;
if (j < 2) {
aux[0] = scales[j+0] & 0x3f3f;
aux[1] = scales[j+2] & 0x3f3f;
} else {
aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
}
const uint8_t * sc = (const uint8_t *)aux;
const uint8_t * m = sc + 2;
for (int i = 0; i < QR4_K; ++i) {
const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
d8[i] = __low2float(bq8i->ds);
const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
u[2*i+0] = q8[0];
u[2*i+1] = q8[4];
}
return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
#else
const block_q4_K * bq4_K = (const block_q4_K *) vbq;
float sumf_d = 0.0f;
float sumf_m = 0.0f;
uint16_t aux16[2];
const uint8_t * s = (const uint8_t *)aux16;
const uint16_t * a = (const uint16_t *)bq4_K->scales;
aux16[0] = a[0] & 0x0f0f;
aux16[1] = (a[0] >> 4) & 0x0f0f;
const float dall = bq4_K->dm[0];
const float dmin = bq4_K->dm[1];
const float d8_1 = __low2float(bq8_1[0].ds);
const float d8_2 = __low2float(bq8_1[1].ds);
const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
const int * q4 = (const int *)bq4_K->qs + (iqs/2);
const int v1 = q4[0];
const int v2 = q4[4];
const int dot1 = __dp4a(ui2, v2 & 0x0f0f0f0f, __dp4a(ui1, v1 & 0x0f0f0f0f, 0));
const int dot2 = __dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, __dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0));
const int dot3 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
const int dot4 = __dp4a(0x01010101, ui4, __dp4a(0x01010101, ui3, 0));
sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]);
sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]);
return dall * sumf_d - dmin * sumf_m;
#endif
}
static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
#ifndef GGML_QKK_64
const block_q5_K * bq5_K = (const block_q5_K *) vbq;
int vl[2];
int vh[2];
int u[2*QR5_K];
float d8[QR5_K];
const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2));
const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4));
vl[0] = ql[0];
vl[1] = ql[4];
vh[0] = qh[0] >> bq8_offset;
vh[1] = qh[4] >> bq8_offset;
const uint16_t * scales = (const uint16_t *)bq5_K->scales;
uint16_t aux[2];
const int j = bq8_offset/2;
if (j < 2) {
aux[0] = scales[j+0] & 0x3f3f;
aux[1] = scales[j+2] & 0x3f3f;
} else {
aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
}
const uint8_t * sc = (const uint8_t *)aux;
const uint8_t * m = sc + 2;
#pragma unroll
for (int i = 0; i < QR5_K; ++i) {
const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
d8[i] = __low2float(bq8i->ds);
const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
u[2*i+0] = q8[0];
u[2*i+1] = q8[4];
}
return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
#else
const block_q5_K * bq5_K = (const block_q5_K *) vbq;
const int8_t * s = bq5_K->scales;
const float d = bq5_K->d;
const float d8_1 = __low2half(bq8_1[0].ds);
const float d8_2 = __low2half(bq8_1[1].ds);
const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
const int * ql = (const int *)bq5_K->qs + (iqs/2);
const int vl1 = ql[0];
const int vl2 = ql[4];
const int step = 4 * (iqs/2); // 0, 4, 8, 12
const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6
const int in = step%8; // 0, 4, 0, 4
const int vh = (*((const int *)(bq5_K->qh + in))) >> im;
const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f);
const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f);
const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f);
const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f);
const float sumf_d = d8_1 * (__dp4a(ui1, v1, 0) * s[0] + __dp4a(ui2, v2, 0) * s[1])
+ d8_2 * (__dp4a(ui3, v3, 0) * s[2] + __dp4a(ui4, v4, 0) * s[3]);
return d * sumf_d;
#endif
}
static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
const block_q6_K * bq6_K = (const block_q6_K *) vbq;
const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4);
const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8);
const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4));
const int vl = get_int_from_uint8(bq6_K->ql, iqs);
const int vh = get_int_from_uint8(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift;
const int8_t * scales = bq6_K->scales + scale_offset;
int u[QR6_K];
float d8[QR6_K];
#pragma unroll
for (int i = 0; i < QR6_K; ++i) {
u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1);
d8[i] = __low2float(bq8_1[bq8_offset + 2*i].ds);
}
return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8);
}
// https://github.com/ggerganov/llama.cpp/blob/c50a82ce0f71558cbb8e555146ba124251504b38/ggml-cuda/mmvq.cu#L4
typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);
template <int ncols_y, int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot_q_cuda>
static __device__ void mul_mat_vec_q(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
constexpr int nwarps = 1;
constexpr int rows_per_cuda_block = 1;
#else
constexpr int nwarps = ncols_y <= 4 ? 4 : 2;
constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
const int row0 = rows_per_cuda_block*blockIdx.x;
const int blocks_per_row_x = ncols_x / qk;
const int blocks_per_col_y = nrows_y / QK8_1;
constexpr int blocks_per_iter = vdr * nwarps*WARP_SIZE / qi;
// partial sum for each thread
float tmp[ncols_y][rows_per_cuda_block] = {0.0f};
const block_q_t * x = (const block_q_t *) vx;
const block_q8_1 * y = (const block_q8_1 *) vy;
for (int kbx = tid / (qi/vdr); kbx < blocks_per_row_x; kbx += blocks_per_iter) {
const int kby = kbx * (qk/QK8_1); // y block index that aligns with kbx
// x block quant index when casting the quants to int
const int kqs = vdr * (tid % (qi/vdr));
#pragma unroll
for (int j = 0; j < ncols_y; ++j) {
#pragma unroll
for (int i = 0; i < rows_per_cuda_block; ++i) {
tmp[j][i] += vec_dot_q_cuda(
&x[kbx + (row0 + i)*blocks_per_row_x], &y[j*blocks_per_col_y + kby], kqs);
}
}
}
__shared__ float tmp_shared[nwarps-1 > 0 ? nwarps-1 : 1][ncols_y][rows_per_cuda_block][WARP_SIZE];
if (threadIdx.y > 0) {
#pragma unroll
for (int j = 0; j < ncols_y; ++j) {
#pragma unroll
for (int i = 0; i < rows_per_cuda_block; ++i) {
tmp_shared[threadIdx.y-1][j][i][threadIdx.x] = tmp[j][i];
}
}
}
__syncthreads();
if (threadIdx.y > 0) {
return;
}
// sum up partial sums and write back result
#pragma unroll
for (int j = 0; j < ncols_y; ++j) {
#pragma unroll
for (int i = 0; i < rows_per_cuda_block; ++i) {
#pragma unroll
for (int l = 0; l < nwarps-1; ++l) {
tmp[j][i] += tmp_shared[l][j][i][threadIdx.x];
}
tmp[j][i] = warp_reduce_sum(tmp[j][i]);
}
if (threadIdx.x < rows_per_cuda_block) {
dst[j*nrows_dst + row0 + threadIdx.x] = tmp[j][threadIdx.x];
}
}
}
// batch size = 1
extern "C" __global__ void mul_mat_vec_q4_0_q8_1_cuda1(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<1, QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q4_1_q8_1_cuda1(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<1, QK4_1, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_0_q8_1_cuda1(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<1, QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_1_q8_1_cuda1(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<1, QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q8_0_q8_1_cuda1(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<1, QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q2_K_q8_1_cuda1(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<1, QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q3_K_q8_1_cuda1(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<1, QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q4_K_q8_1_cuda1(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<1, QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_K_q8_1_cuda1(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<1, QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q6_K_q8_1_cuda1(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<1, QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
// batch size = 2
extern "C" __global__ void mul_mat_vec_q4_0_q8_1_cuda2(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<2, QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q4_1_q8_1_cuda2(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<2, QK4_1, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_0_q8_1_cuda2(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<2, QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_1_q8_1_cuda2(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<2, QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q8_0_q8_1_cuda2(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<2, QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q2_K_q8_1_cuda2(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<2, QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q3_K_q8_1_cuda2(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<2, QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q4_K_q8_1_cuda2(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<2, QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_K_q8_1_cuda2(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<2, QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q6_K_q8_1_cuda2(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<2, QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
// batch size = 3
extern "C" __global__ void mul_mat_vec_q4_0_q8_1_cuda3(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<3, QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q4_1_q8_1_cuda3(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<3, QK4_1, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_0_q8_1_cuda3(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<3, QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_1_q8_1_cuda3(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<3, QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q8_0_q8_1_cuda3(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<3, QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q2_K_q8_1_cuda3(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<3, QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q3_K_q8_1_cuda3(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<3, QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q4_K_q8_1_cuda3(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<3, QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_K_q8_1_cuda3(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<3, QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q6_K_q8_1_cuda3(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<3, QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
// batch size = 4
extern "C" __global__ void mul_mat_vec_q4_0_q8_1_cuda4(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<4, QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q4_1_q8_1_cuda4(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<4, QK4_1, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_0_q8_1_cuda4(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<4, QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_1_q8_1_cuda4(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<4, QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q8_0_q8_1_cuda4(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<4, QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q2_K_q8_1_cuda4(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<4, QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q3_K_q8_1_cuda4(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<4, QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q4_K_q8_1_cuda4(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<4, QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_K_q8_1_cuda4(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<4, QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q6_K_q8_1_cuda4(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<4, QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
// batch size = 5
extern "C" __global__ void mul_mat_vec_q4_0_q8_1_cuda5(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<5, QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q4_1_q8_1_cuda5(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<5, QK4_1, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_0_q8_1_cuda5(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<5, QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_1_q8_1_cuda5(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<5, QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q8_0_q8_1_cuda5(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<5, QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q2_K_q8_1_cuda5(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<5, QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q3_K_q8_1_cuda5(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<5, QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q4_K_q8_1_cuda5(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<5, QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_K_q8_1_cuda5(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<5, QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q6_K_q8_1_cuda5(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<5, QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
// batch size = 6
extern "C" __global__ void mul_mat_vec_q4_0_q8_1_cuda6(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<6, QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q4_1_q8_1_cuda6(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<6, QK4_1, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_0_q8_1_cuda6(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<6, QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_1_q8_1_cuda6(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<6, QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q8_0_q8_1_cuda6(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<6, QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q2_K_q8_1_cuda6(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<6, QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q3_K_q8_1_cuda6(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<6, QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q4_K_q8_1_cuda6(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<6, QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_K_q8_1_cuda6(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<6, QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q6_K_q8_1_cuda6(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<6, QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
// batch size = 7
extern "C" __global__ void mul_mat_vec_q4_0_q8_1_cuda7(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<7, QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q4_1_q8_1_cuda7(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<7, QK4_1, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_0_q8_1_cuda7(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<7, QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_1_q8_1_cuda7(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<7, QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q8_0_q8_1_cuda7(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<7, QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q2_K_q8_1_cuda7(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<7, QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q3_K_q8_1_cuda7(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<7, QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q4_K_q8_1_cuda7(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<7, QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_K_q8_1_cuda7(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<7, QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q6_K_q8_1_cuda7(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<7, QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
// batch size = 8
extern "C" __global__ void mul_mat_vec_q4_0_q8_1_cuda8(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<8, QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q4_1_q8_1_cuda8(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<8, QK4_1, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_0_q8_1_cuda8(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<8, QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_1_q8_1_cuda8(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<8, QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q8_0_q8_1_cuda8(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<8, QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q2_K_q8_1_cuda8(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<8, QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q3_K_q8_1_cuda8(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<8, QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q4_K_q8_1_cuda8(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<8, QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q5_K_q8_1_cuda8(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<8, QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void mul_mat_vec_q6_K_q8_1_cuda8(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
mul_mat_vec_q<8, QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
}
extern "C" __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded) {
const int ix = blockDim.x*blockIdx.x + threadIdx.x;
if (ix >= kx_padded) {
return;
}
const int iy = blockDim.y*blockIdx.y + threadIdx.y;
const int i_padded = iy*kx_padded + ix;
block_q8_1 * y = (block_q8_1 *) vy;
const int ib = i_padded / QK8_1; // block index
const int iqs = i_padded % QK8_1; // quant index
const float xi = ix < kx ? x[iy*kx + ix] : 0.0f;
float amax = fabsf(xi);
float sum = xi;
amax = warp_reduce_max(amax);
sum = warp_reduce_sum(sum);
const float d = amax / 127;
const int8_t q = amax == 0.0f ? 0 : roundf(xi / d);
y[ib].qs[iqs] = q;
if (iqs > 0) {
return;
}
reinterpret_cast<half&>(y[ib].ds.x) = d;
reinterpret_cast<half&>(y[ib].ds.y) = sum;
}
// Kernels from https://github.com/ggerganov/llama.cpp/blob/master/ggml-cuda/mmq.cu
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
__shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
__shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI5_0) + mmq_y/QI5_0];
*x_ql = tile_x_ql;
*x_dm = (half2 *) tile_x_d;
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_0(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps);
GGML_CUDA_ASSUME(k >= 0);
GGML_CUDA_ASSUME(k < WARP_SIZE);
const int kbx = k / QI5_0;
const int kqsx = k % QI5_0;
const block_q5_0 * bx0 = (const block_q5_0 *) vx;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + i_offset;
if (need_check) {
i = min(i, i_max);
}
const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx;
const int ql = get_int_from_uint8(bxi->qs, kqsx);
const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (k % QI5_0));
int qs0 = (ql >> 0) & 0x0F0F0F0F;
qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
qs0 = __vsubss4(qs0, 0x10101010); // subtract 16
x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
int qs1 = (ql >> 4) & 0x0F0F0F0F;
qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
qs1 = __vsubss4(qs1, 0x10101010); // subtract 16
x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
}
const int blocks_per_tile_x_row = WARP_SIZE / QI5_0;
const int kbxd = k % blocks_per_tile_x_row;
float * x_dmf = (float *) x_dm;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) {
int i = i0 + i_offset * QI5_0 + k / blocks_per_tile_x_row;
if (need_check) {
i = min(i, i_max);
}
const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd;
x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = bxi->d;
}
}
static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0;
const float * x_dmf = (const float *) x_dm;
const float * y_df = (const float *) y_ds;
int u[2*VDR_Q5_0_Q8_1_MMQ];
#pragma unroll
for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) {
u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
}
return vec_dot_q8_0_q8_1_impl<QR5_0*VDR_Q5_0_Q8_1_MMQ>
(&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
}
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
__shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_1) + mmq_y/QI5_1];
*x_ql = tile_x_ql;
*x_dm = tile_x_dm;
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_1(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps);
GGML_CUDA_ASSUME(k >= 0);
GGML_CUDA_ASSUME(k < WARP_SIZE);
const int kbx = k / QI5_1;
const int kqsx = k % QI5_1;
const block_q5_1 * bx0 = (const block_q5_1 *) vx;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + i_offset;
if (need_check) {
i = min(i, i_max);
}
const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx;
const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (k % QI5_1));
int qs0 = (ql >> 0) & 0x0F0F0F0F;
qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
int qs1 = (ql >> 4) & 0x0F0F0F0F;
qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
}
const int blocks_per_tile_x_row = WARP_SIZE / QI5_1;
const int kbxd = k % blocks_per_tile_x_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) {
int i = i0 + i_offset * QI5_1 + k / blocks_per_tile_x_row;
if (need_check) {
i = min(i, i_max);
}
const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd;
x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm;
}
}
static __device__ __forceinline__ float vec_dot_q5_1_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1;
int u[2*VDR_Q5_1_Q8_1_MMQ];
#pragma unroll
for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) {
u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_1) % WARP_SIZE];
}
return vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ>
(&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dm[index_bx], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
}
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
__shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
__shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI8_0) + mmq_y/QI8_0];
*x_ql = tile_x_qs;
*x_dm = (half2 *) tile_x_d;
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q8_0(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps);
GGML_CUDA_ASSUME(k >= 0);
GGML_CUDA_ASSUME(k < WARP_SIZE);
const int kbx = k / QI8_0;
const int kqsx = k % QI8_0;
float * x_dmf = (float *) x_dm;
const block_q8_0 * bx0 = (const block_q8_0 *) vx;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + i_offset;
if (need_check) {
i = min(i, i_max);
}
const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx;
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx);
}
const int blocks_per_tile_x_row = WARP_SIZE / QI8_0;
const int kbxd = k % blocks_per_tile_x_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) {
int i = i0 + i_offset * QI8_0 + k / blocks_per_tile_x_row;
if (need_check) {
i = min(i, i_max);
}
const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbxd;
x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = bxi->d;
}
}
static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
const float * x_dmf = (const float *) x_dm;
const float * y_df = (const float *) y_ds;
return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMQ>
(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
}
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q2_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
GGML_UNUSED(x_qh);
__shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI2_K) + mmq_y/QI2_K];
__shared__ int tile_x_sc[mmq_y * (WARP_SIZE/4) + mmq_y/4];
*x_ql = tile_x_ql;
*x_dm = tile_x_dm;
*x_sc = tile_x_sc;
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q2_K(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
GGML_UNUSED(x_qh);
GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps);
GGML_CUDA_ASSUME(k >= 0);
GGML_CUDA_ASSUME(k < WARP_SIZE);
const int kbx = k / QI2_K;
const int kqsx = k % QI2_K;
const block_q2_K * bx0 = (const block_q2_K *) vx;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + i_offset;
if (need_check) {
i = min(i, i_max);
}
const block_q2_K * bxi = bx0 + i*blocks_per_row + kbx;
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
}
const int blocks_per_tile_x_row = WARP_SIZE / QI2_K;
const int kbxd = k % blocks_per_tile_x_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI2_K) {
int i = (i0 + i_offset * QI2_K + k / blocks_per_tile_x_row) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q2_K * bxi = bx0 + i*blocks_per_row + kbxd;
x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm;
}
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
if (need_check) {
i = min(i, i_max);
}
const block_q2_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI2_K/4);
x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, k % (QI2_K/4));
}
}
static __device__ __forceinline__ float vec_dot_q2_K_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
GGML_UNUSED(x_qh);
const int kbx = k / QI2_K;
const int ky = (k % QI2_K) * QR2_K;
const float * y_df = (const float *) y_ds;
int v[QR2_K*VDR_Q2_K_Q8_1_MMQ];
const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2);
const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2));
#pragma unroll
for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) {
v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303;
}
const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4;
const int index_y = j * WARP_SIZE + (QR2_K*k) % WARP_SIZE;
return vec_dot_q2_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]);
}
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q3_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
__shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI3_K) + mmq_y/QI3_K];
__shared__ int tile_x_qh[mmq_y * (WARP_SIZE/2) + mmq_y/2];
__shared__ int tile_x_sc[mmq_y * (WARP_SIZE/4) + mmq_y/4];
*x_ql = tile_x_ql;
*x_dm = tile_x_dm;
*x_qh = tile_x_qh;
*x_sc = tile_x_sc;
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q3_K(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps);
GGML_CUDA_ASSUME(k >= 0);
GGML_CUDA_ASSUME(k < WARP_SIZE);
const int kbx = k / QI3_K;
const int kqsx = k % QI3_K;
const block_q3_K * bx0 = (const block_q3_K *) vx;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + i_offset;
if (need_check) {
i = min(i, i_max);
}
const block_q3_K * bxi = bx0 + i*blocks_per_row + kbx;
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
}
const int blocks_per_tile_x_row = WARP_SIZE / QI3_K;
const int kbxd = k % blocks_per_tile_x_row;
float * x_dmf = (float *) x_dm;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) {
int i = (i0 + i_offset * QI3_K + k / blocks_per_tile_x_row) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q3_K * bxi = bx0 + i*blocks_per_row + kbxd;
x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = bxi->d;
}
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 2) {
int i = i0 + i_offset * 2 + k / (WARP_SIZE/2);
if (need_check) {
i = min(i, i_max);
}
const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI3_K/2);
// invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, k % (QI3_K/2));
}
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
if (need_check) {
i = min(i, i_max);
}
const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI3_K/4);
const int ksc = k % (QI3_K/4);
const int ksc_low = ksc % (QI3_K/8);
const int shift_low = 4 * (ksc / (QI3_K/8));
const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F;
const int ksc_high = QI3_K/8;
const int shift_high = 2 * ksc;
const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030;
const int sc = __vsubss4(sc_low | sc_high, 0x20202020);
x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = sc;
}
}
static __device__ __forceinline__ float vec_dot_q3_K_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
const int kbx = k / QI3_K;
const int ky = (k % QI3_K) * QR3_K;
const float * x_dmf = (const float *) x_dm;
const float * y_df = (const float *) y_ds;
const int8_t * scales = ((const int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
int v[QR3_K*VDR_Q3_K_Q8_1_MMQ];
#pragma unroll
for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) {
const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2);
const int shift = 2 * ((ky % 32) / 8);
const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303;
const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8);
const int vlh = (vh << 2) & 0x04040404;
v[l] = __vsubss4(vll, vlh);
}
const int index_y = j * WARP_SIZE + (k*QR3_K) % WARP_SIZE;
return vec_dot_q3_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]);
}
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
GGML_UNUSED(x_qh);
__shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_K) + mmq_y/QI4_K];
__shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
*x_ql = tile_x_ql;
*x_dm = tile_x_dm;
*x_sc = tile_x_sc;
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_K(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
GGML_UNUSED(x_qh);
GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps);
GGML_CUDA_ASSUME(k >= 0);
GGML_CUDA_ASSUME(k < WARP_SIZE);
const int kbx = k / QI4_K; // == 0 if QK_K == 256
const int kqsx = k % QI4_K; // == k if QK_K == 256
const block_q4_K * bx0 = (const block_q4_K *) vx;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + i_offset;
if (need_check) {
i = min(i, i_max);
}
const block_q4_K * bxi = bx0 + i*blocks_per_row + kbx;
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
}
const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256
const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) {
int i = (i0 + i_offset * QI4_K + k / blocks_per_tile_x_row) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
#if QK_K == 256
x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
#else
x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = {bxi->dm[0], bxi->dm[1]};
#endif
}
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8);
const int * scales = (const int *) bxi->scales;
const int ksc = k % (WARP_SIZE/8);
// scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
}
}
static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
GGML_UNUSED(x_qh);
const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE;
return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[index_y], sc, sc+8,
x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
}
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
GGML_UNUSED(x_qh);
__shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_K) + mmq_y/QI5_K];
__shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
*x_ql = tile_x_ql;
*x_dm = tile_x_dm;
*x_sc = tile_x_sc;
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_K(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
GGML_UNUSED(x_qh);
GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps);
GGML_CUDA_ASSUME(k >= 0);
GGML_CUDA_ASSUME(k < WARP_SIZE);
const int kbx = k / QI5_K; // == 0 if QK_K == 256
const int kqsx = k % QI5_K; // == k if QK_K == 256
const block_q5_K * bx0 = (const block_q5_K *) vx;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + i_offset;
if (need_check) {
i = min(i, i_max);
}
const block_q5_K * bxi = bx0 + i*blocks_per_row + kbx;
const int ky = QR5_K*kqsx;
const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
const int ql0 = (ql >> 0) & 0x0F0F0F0F;
const int ql1 = (ql >> 4) & 0x0F0F0F0F;
const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4));
const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010;
const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010;
const int kq0 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + 0;
const int kq1 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + (QI5_K/4);
x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0;
x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1;
}
const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256
const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) {
int i = (i0 + i_offset * QI5_K + k / blocks_per_tile_x_row) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
#if QK_K == 256
x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
#endif
}
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8);
const int * scales = (const int *) bxi->scales;
const int ksc = k % (WARP_SIZE/8);
// scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
}
}
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
GGML_UNUSED(x_qh);
const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8);
const int index_x = i * (QR5_K*WARP_SIZE + 1) + QR5_K*k;
const int index_y = j * WARP_SIZE + (QR5_K*k) % WARP_SIZE;
return vec_dot_q5_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8,
x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
}
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q6_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
GGML_UNUSED(x_qh);
__shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI6_K) + mmq_y/QI6_K];
__shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
*x_ql = tile_x_ql;
*x_dm = tile_x_dm;
*x_sc = tile_x_sc;
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q6_K(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
GGML_UNUSED(x_qh);
GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps);
GGML_CUDA_ASSUME(k >= 0);
GGML_CUDA_ASSUME(k < WARP_SIZE);
const int kbx = k / QI6_K; // == 0 if QK_K == 256
const int kqsx = k % QI6_K; // == k if QK_K == 256
const block_q6_K * bx0 = (const block_q6_K *) vx;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + i_offset;
if (need_check) {
i = min(i, i_max);
}
const block_q6_K * bxi = bx0 + i*blocks_per_row + kbx;
const int ky = QR6_K*kqsx;
const int ql = get_int_from_uint8(bxi->ql, kqsx);
const int ql0 = (ql >> 0) & 0x0F0F0F0F;
const int ql1 = (ql >> 4) & 0x0F0F0F0F;
const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4));
const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030;
const int qh1 = (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) & 0x30303030;
const int kq0 = ky - ky % QI6_K + k % (QI6_K/2) + 0;
const int kq1 = ky - ky % QI6_K + k % (QI6_K/2) + (QI6_K/2);
x_ql[i * (2*WARP_SIZE + 1) + kq0] = __vsubss4(ql0 | qh0, 0x20202020);
x_ql[i * (2*WARP_SIZE + 1) + kq1] = __vsubss4(ql1 | qh1, 0x20202020);
}
const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256
const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
float * x_dmf = (float *) x_dm;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) {
int i = (i0 + i_offset * QI6_K + k / blocks_per_tile_x_row) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q6_K * bxi = bx0 + i*blocks_per_row + kbxd;
x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = bxi->d;
}
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / 4;
x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, k % (QI6_K/8));
}
}
static __device__ __forceinline__ float vec_dot_q6_K_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
GGML_UNUSED(x_qh);
const float * x_dmf = (const float *) x_dm;
const float * y_df = (const float *) y_ds;
const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/8]);
const int index_x = i * (QR6_K*WARP_SIZE + 1) + QR6_K*k;
const int index_y = j * WARP_SIZE + (QR6_K*k) % WARP_SIZE;
return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]);
}
static __device__ __forceinline__ float vec_dot_q4_0_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
const float * x_dmf = (const float *) x_dm;
int u[2*VDR_Q4_0_Q8_1_MMQ];
#pragma unroll
for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) {
u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_0) % WARP_SIZE];
}
return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ>
(&x_ql[i * (WARP_SIZE + 1) + k], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0],
y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
}
static __device__ __forceinline__ float vec_dot_q4_1_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
int u[2*VDR_Q4_1_Q8_1_MMQ];
#pragma unroll
for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) {
u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_1) % WARP_SIZE];
}
return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ>
(&x_ql[i * (WARP_SIZE + 1) + k], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1],
y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
}
extern "C" __global__ void
mul_mat_q4_0(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
const int mmq_x = MMQ_X_Q4_0_AMPERE;
const int mmq_y = MMQ_Y_Q4_0_AMPERE;
const int nwarps = NWARPS_Q4_0_AMPERE;
mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
load_tiles_q4_0<mmq_y, nwarps, true>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
}
extern "C" __global__ void
mul_mat_q4_1(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
const int mmq_x = MMQ_X_Q4_1_AMPERE;
const int mmq_y = MMQ_Y_Q4_1_AMPERE;
const int nwarps = NWARPS_Q4_1_AMPERE;
mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
load_tiles_q4_1<mmq_y, nwarps, true>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
}
extern "C" __global__ void
mul_mat_q5_0(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
const int mmq_x = MMQ_X_Q5_0_AMPERE;
const int mmq_y = MMQ_Y_Q5_0_AMPERE;
const int nwarps = NWARPS_Q5_0_AMPERE;
mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
load_tiles_q5_0<mmq_y, nwarps, true>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
}
extern "C" __global__ void
mul_mat_q5_1(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
const int mmq_x = MMQ_X_Q5_1_AMPERE;
const int mmq_y = MMQ_Y_Q5_1_AMPERE;
const int nwarps = NWARPS_Q5_1_AMPERE;
mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
load_tiles_q5_1<mmq_y, nwarps, true>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
}
extern "C" __global__ void
mul_mat_q8_0(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
const int mmq_x = MMQ_X_Q8_0_AMPERE;
const int mmq_y = MMQ_Y_Q8_0_AMPERE;
const int nwarps = NWARPS_Q8_0_AMPERE;
mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
load_tiles_q8_0<mmq_y, nwarps, true>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
}
extern "C" __global__ void
mul_mat_q2_K(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
const int mmq_x = MMQ_X_Q2_K_AMPERE;
const int mmq_y = MMQ_Y_Q2_K_AMPERE;
const int nwarps = NWARPS_Q2_K_AMPERE;
mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
load_tiles_q2_K<mmq_y, nwarps, true>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
}
extern "C" __global__ void
mul_mat_q3_K(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
const int mmq_x = MMQ_X_Q3_K_AMPERE;
const int mmq_y = MMQ_Y_Q3_K_AMPERE;
const int nwarps = NWARPS_Q3_K_AMPERE;
mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
load_tiles_q3_K<mmq_y, nwarps, true>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
}
extern "C" __global__ void
mul_mat_q4_K(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
const int mmq_x = MMQ_X_Q4_K_AMPERE;
const int mmq_y = MMQ_Y_Q4_K_AMPERE;
const int nwarps = NWARPS_Q4_K_AMPERE;
mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
load_tiles_q4_K<mmq_y, nwarps, true>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
}
extern "C" __global__ void
mul_mat_q5_K(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
const int mmq_x = MMQ_X_Q5_K_AMPERE;
const int mmq_y = MMQ_Y_Q5_K_AMPERE;
const int nwarps = NWARPS_Q5_K_AMPERE;
mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
load_tiles_q5_K<mmq_y, nwarps, true>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
}
extern "C" __global__ void
mul_mat_q6_K(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
const int mmq_x = MMQ_X_Q6_K_AMPERE;
const int mmq_y = MMQ_Y_Q6_K_AMPERE;
const int nwarps = NWARPS_Q6_K_AMPERE;
mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
load_tiles_q6_K<mmq_y, nwarps, true>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
}