mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00
390 lines
12 KiB
Rust
390 lines
12 KiB
Rust
use candle_core::quantized::{gguf_file, GgmlDType, QTensor};
|
|
use candle_core::{Device, Result};
|
|
use clap::{Parser, Subcommand, ValueEnum};
|
|
use rayon::prelude::*;
|
|
|
|
#[derive(ValueEnum, Debug, Clone)]
|
|
enum QuantizationMode {
|
|
/// The default quantization includes all 2d tensors, except the output tensor which always
|
|
/// uses Q6_K.
|
|
Llama,
|
|
}
|
|
|
|
impl QuantizationMode {
|
|
fn quantize(&self, name: &str, tensor: QTensor, dtype: GgmlDType) -> Result<QTensor> {
|
|
match self {
|
|
Self::Llama => {
|
|
// Same behavior as the llama.cpp quantization.
|
|
let should_quantize = name.ends_with(".weight") && tensor.rank() == 2;
|
|
if should_quantize {
|
|
let tensor = tensor.dequantize(&Device::Cpu)?;
|
|
if name == "output.weight" {
|
|
QTensor::quantize(&tensor, GgmlDType::Q6K)
|
|
} else {
|
|
QTensor::quantize(&tensor, dtype)
|
|
}
|
|
} else {
|
|
Ok(tensor)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(ValueEnum, Debug, Clone)]
|
|
enum Quantization {
|
|
#[value(name = "q4_0")]
|
|
Q4_0,
|
|
#[value(name = "q4_1")]
|
|
Q4_1,
|
|
#[value(name = "q5_0")]
|
|
Q5_0,
|
|
#[value(name = "q5_1")]
|
|
Q5_1,
|
|
#[value(name = "q8_0")]
|
|
Q8_0,
|
|
#[value(name = "q8_1")]
|
|
Q8_1,
|
|
Q2k,
|
|
Q3k,
|
|
Q4k,
|
|
Q5k,
|
|
Q6k,
|
|
Q8k,
|
|
F16,
|
|
F32,
|
|
}
|
|
|
|
impl Quantization {
|
|
fn dtype(&self) -> GgmlDType {
|
|
match self {
|
|
Quantization::Q4_0 => GgmlDType::Q4_0,
|
|
Quantization::Q4_1 => GgmlDType::Q4_1,
|
|
Quantization::Q5_0 => GgmlDType::Q5_0,
|
|
Quantization::Q5_1 => GgmlDType::Q5_1,
|
|
Quantization::Q8_0 => GgmlDType::Q8_0,
|
|
Quantization::Q8_1 => GgmlDType::Q8_1,
|
|
Quantization::Q2k => GgmlDType::Q2K,
|
|
Quantization::Q3k => GgmlDType::Q3K,
|
|
Quantization::Q4k => GgmlDType::Q4K,
|
|
Quantization::Q5k => GgmlDType::Q5K,
|
|
Quantization::Q6k => GgmlDType::Q6K,
|
|
Quantization::Q8k => GgmlDType::Q8K,
|
|
Quantization::F16 => GgmlDType::F16,
|
|
Quantization::F32 => GgmlDType::F32,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(ValueEnum, Debug, Clone)]
|
|
enum Format {
|
|
Safetensors,
|
|
Npz,
|
|
Ggml,
|
|
Gguf,
|
|
Pth,
|
|
Pickle,
|
|
}
|
|
|
|
impl Format {
|
|
fn infer<P: AsRef<std::path::Path>>(p: P) -> Option<Self> {
|
|
p.as_ref()
|
|
.extension()
|
|
.and_then(|e| e.to_str())
|
|
.and_then(|e| match e {
|
|
// We don't infer any format for .bin as it can be used for ggml/gguf or pytorch.
|
|
"safetensors" | "safetensor" => Some(Self::Safetensors),
|
|
"npz" => Some(Self::Npz),
|
|
"pth" | "pt" => Some(Self::Pth),
|
|
"ggml" => Some(Self::Ggml),
|
|
"gguf" => Some(Self::Gguf),
|
|
_ => None,
|
|
})
|
|
}
|
|
}
|
|
|
|
#[derive(Subcommand, Debug, Clone)]
|
|
enum Command {
|
|
Ls {
|
|
files: Vec<std::path::PathBuf>,
|
|
|
|
/// The file format to use, if unspecified infer from the file extension.
|
|
#[arg(long, value_enum)]
|
|
format: Option<Format>,
|
|
|
|
/// Enable verbose mode.
|
|
#[arg(short, long)]
|
|
verbose: bool,
|
|
},
|
|
|
|
Quantize {
|
|
/// The input file(s), in safetensors format.
|
|
in_file: Vec<std::path::PathBuf>,
|
|
|
|
/// The output file, in gguf format.
|
|
#[arg(long)]
|
|
out_file: std::path::PathBuf,
|
|
|
|
/// The quantization schema to apply.
|
|
#[arg(long, value_enum)]
|
|
quantization: Quantization,
|
|
|
|
/// Which tensor to quantize.
|
|
#[arg(long, value_enum, default_value_t = QuantizationMode::Llama)]
|
|
mode: QuantizationMode,
|
|
},
|
|
|
|
Dequantize {
|
|
/// The input file, in gguf format.
|
|
in_file: std::path::PathBuf,
|
|
|
|
/// The output file, in safetensors format.
|
|
#[arg(long)]
|
|
out_file: std::path::PathBuf,
|
|
},
|
|
}
|
|
|
|
#[derive(Parser, Debug, Clone)]
|
|
struct Args {
|
|
#[command(subcommand)]
|
|
command: Command,
|
|
}
|
|
|
|
fn run_ls(
|
|
file: &std::path::PathBuf,
|
|
format: Option<Format>,
|
|
verbose: bool,
|
|
device: &Device,
|
|
) -> Result<()> {
|
|
let format = match format {
|
|
Some(format) => format,
|
|
None => match Format::infer(file) {
|
|
Some(format) => format,
|
|
None => {
|
|
println!(
|
|
"{file:?}: cannot infer format from file extension, use the --format flag"
|
|
);
|
|
return Ok(());
|
|
}
|
|
},
|
|
};
|
|
match format {
|
|
Format::Npz => {
|
|
let tensors = candle_core::npy::NpzTensors::new(file)?;
|
|
let mut names = tensors.names();
|
|
names.sort();
|
|
for name in names {
|
|
let shape_dtype = match tensors.get_shape_and_dtype(name) {
|
|
Ok((shape, dtype)) => format!("[{shape:?}; {dtype:?}]"),
|
|
Err(err) => err.to_string(),
|
|
};
|
|
println!("{name}: {shape_dtype}")
|
|
}
|
|
}
|
|
Format::Safetensors => {
|
|
let tensors = unsafe { candle_core::safetensors::MmapedSafetensors::new(file)? };
|
|
let mut tensors = tensors.tensors();
|
|
tensors.sort_by(|a, b| a.0.cmp(&b.0));
|
|
for (name, view) in tensors.iter() {
|
|
let dtype = view.dtype();
|
|
let dtype = match candle_core::DType::try_from(dtype) {
|
|
Ok(dtype) => format!("{dtype:?}"),
|
|
Err(_) => format!("{dtype:?}"),
|
|
};
|
|
let shape = view.shape();
|
|
println!("{name}: [{shape:?}; {dtype}]")
|
|
}
|
|
}
|
|
Format::Pth => {
|
|
let mut tensors = candle_core::pickle::read_pth_tensor_info(file, verbose, None)?;
|
|
tensors.sort_by(|a, b| a.name.cmp(&b.name));
|
|
for tensor_info in tensors.iter() {
|
|
println!(
|
|
"{}: [{:?}; {:?}]",
|
|
tensor_info.name,
|
|
tensor_info.layout.shape(),
|
|
tensor_info.dtype,
|
|
);
|
|
if verbose {
|
|
println!(" {:?}", tensor_info);
|
|
}
|
|
}
|
|
}
|
|
Format::Pickle => {
|
|
let file = std::fs::File::open(file)?;
|
|
let mut reader = std::io::BufReader::new(file);
|
|
let mut stack = candle_core::pickle::Stack::empty();
|
|
stack.read_loop(&mut reader)?;
|
|
for (i, obj) in stack.stack().iter().enumerate() {
|
|
println!("{i} {obj:?}");
|
|
}
|
|
}
|
|
Format::Ggml => {
|
|
let mut file = std::fs::File::open(file)?;
|
|
let content = candle_core::quantized::ggml_file::Content::read(&mut file, device)?;
|
|
let mut tensors = content.tensors.into_iter().collect::<Vec<_>>();
|
|
tensors.sort_by(|a, b| a.0.cmp(&b.0));
|
|
for (name, qtensor) in tensors.iter() {
|
|
println!("{name}: [{:?}; {:?}]", qtensor.shape(), qtensor.dtype());
|
|
}
|
|
}
|
|
Format::Gguf => {
|
|
let mut file = std::fs::File::open(file)?;
|
|
let content = gguf_file::Content::read(&mut file)?;
|
|
if verbose {
|
|
let mut metadata = content.metadata.into_iter().collect::<Vec<_>>();
|
|
metadata.sort_by(|a, b| a.0.cmp(&b.0));
|
|
println!("metadata entries ({})", metadata.len());
|
|
for (key, value) in metadata.iter() {
|
|
println!(" {key}: {value:?}");
|
|
}
|
|
}
|
|
let mut tensors = content.tensor_infos.into_iter().collect::<Vec<_>>();
|
|
tensors.sort_by(|a, b| a.0.cmp(&b.0));
|
|
for (name, info) in tensors.iter() {
|
|
println!("{name}: [{:?}; {:?}]", info.shape, info.ggml_dtype);
|
|
}
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn run_quantize_safetensors(
|
|
in_files: &[std::path::PathBuf],
|
|
out_file: std::path::PathBuf,
|
|
q: Quantization,
|
|
) -> Result<()> {
|
|
let mut out_file = std::fs::File::create(out_file)?;
|
|
let mut tensors = std::collections::HashMap::new();
|
|
for in_file in in_files.iter() {
|
|
let in_tensors = candle_core::safetensors::load(in_file, &Device::Cpu)?;
|
|
tensors.extend(in_tensors)
|
|
}
|
|
println!("tensors: {}", tensors.len());
|
|
|
|
let dtype = q.dtype();
|
|
let block_size = dtype.block_size();
|
|
|
|
let qtensors = tensors
|
|
.into_par_iter()
|
|
.map(|(name, tensor)| {
|
|
let should_quantize = tensor.rank() == 2 && tensor.dim(1)? % block_size == 0;
|
|
println!(" quantizing {name} {tensor:?} {should_quantize}");
|
|
let tensor = if should_quantize {
|
|
QTensor::quantize(&tensor, dtype)?
|
|
} else {
|
|
QTensor::quantize(&tensor, GgmlDType::F32)?
|
|
};
|
|
Ok((name, tensor))
|
|
})
|
|
.collect::<Result<Vec<_>>>()?;
|
|
let qtensors = qtensors
|
|
.iter()
|
|
.map(|(k, v)| (k.as_str(), v))
|
|
.collect::<Vec<_>>();
|
|
gguf_file::write(&mut out_file, &[], &qtensors)?;
|
|
Ok(())
|
|
}
|
|
|
|
fn run_dequantize(
|
|
in_file: std::path::PathBuf,
|
|
out_file: std::path::PathBuf,
|
|
device: &Device,
|
|
) -> Result<()> {
|
|
let mut in_file = std::fs::File::open(in_file)?;
|
|
let content = gguf_file::Content::read(&mut in_file)?;
|
|
let mut tensors = std::collections::HashMap::new();
|
|
for (tensor_name, _) in content.tensor_infos.iter() {
|
|
let tensor = content.tensor(&mut in_file, tensor_name, device)?;
|
|
let tensor = tensor.dequantize(device)?;
|
|
tensors.insert(tensor_name.to_string(), tensor);
|
|
}
|
|
candle_core::safetensors::save(&tensors, out_file)?;
|
|
Ok(())
|
|
}
|
|
|
|
fn run_quantize(
|
|
in_files: &[std::path::PathBuf],
|
|
out_file: std::path::PathBuf,
|
|
q: Quantization,
|
|
qmode: QuantizationMode,
|
|
device: &Device,
|
|
) -> Result<()> {
|
|
if in_files.is_empty() {
|
|
candle_core::bail!("no specified input files")
|
|
}
|
|
if let Some(extension) = out_file.extension() {
|
|
if extension == "safetensors" {
|
|
candle_core::bail!("the generated file cannot use the safetensors extension")
|
|
}
|
|
}
|
|
if let Some(extension) = in_files[0].extension() {
|
|
if extension == "safetensors" {
|
|
return run_quantize_safetensors(in_files, out_file, q);
|
|
}
|
|
}
|
|
|
|
if in_files.len() != 1 {
|
|
candle_core::bail!("only a single in-file can be used when quantizing gguf files")
|
|
}
|
|
|
|
// Open the out file early so as to fail directly on missing directories etc.
|
|
let mut out_file = std::fs::File::create(out_file)?;
|
|
let mut in_ = std::fs::File::open(&in_files[0])?;
|
|
let content = gguf_file::Content::read(&mut in_)?;
|
|
println!("tensors: {}", content.tensor_infos.len());
|
|
|
|
let dtype = q.dtype();
|
|
let qtensors = content
|
|
.tensor_infos
|
|
.par_iter()
|
|
.map(|(name, _)| {
|
|
println!(" quantizing {name}");
|
|
let mut in_file = std::fs::File::open(&in_files[0])?;
|
|
let tensor = content.tensor(&mut in_file, name, device)?;
|
|
let tensor = qmode.quantize(name, tensor, dtype)?;
|
|
Ok((name, tensor))
|
|
})
|
|
.collect::<Result<Vec<_>>>()?;
|
|
let qtensors = qtensors
|
|
.iter()
|
|
.map(|(k, v)| (k.as_str(), v))
|
|
.collect::<Vec<_>>();
|
|
|
|
let metadata = content
|
|
.metadata
|
|
.iter()
|
|
.map(|(k, v)| (k.as_str(), v))
|
|
.collect::<Vec<_>>();
|
|
gguf_file::write(&mut out_file, metadata.as_slice(), &qtensors)?;
|
|
Ok(())
|
|
}
|
|
|
|
fn main() -> anyhow::Result<()> {
|
|
let args = Args::parse();
|
|
let device = Device::Cpu;
|
|
match args.command {
|
|
Command::Ls {
|
|
files,
|
|
format,
|
|
verbose,
|
|
} => {
|
|
let multiple_files = files.len() > 1;
|
|
for file in files.iter() {
|
|
if multiple_files {
|
|
println!("--- {file:?} ---");
|
|
}
|
|
run_ls(file, format.clone(), verbose, &device)?
|
|
}
|
|
}
|
|
Command::Quantize {
|
|
in_file,
|
|
out_file,
|
|
quantization,
|
|
mode,
|
|
} => run_quantize(&in_file, out_file, quantization, mode, &device)?,
|
|
Command::Dequantize { in_file, out_file } => run_dequantize(in_file, out_file, &device)?,
|
|
}
|
|
Ok(())
|
|
}
|