Files
candle/candle-examples/examples/bert/main.rs
2023-07-05 07:19:57 +00:00

705 lines
23 KiB
Rust

#![allow(dead_code)]
use anyhow::{anyhow, Error as E, Result};
use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor};
use candle_hub::{api::Api, Cache, Repo, RepoType};
use clap::Parser;
use serde::Deserialize;
use std::collections::HashMap;
const DTYPE: DType = DType::F32;
struct VarBuilder<'a> {
safetensors: Option<(HashMap<String, usize>, Vec<SafeTensors<'a>>)>,
dtype: DType,
device: Device,
}
impl<'a> VarBuilder<'a> {
pub fn from_safetensors(
safetensors: Vec<SafeTensors<'a>>,
dtype: DType,
device: Device,
) -> Self {
let mut routing = HashMap::new();
for (index, sf) in safetensors.iter().enumerate() {
for k in sf.names() {
routing.insert(k.to_string(), index);
}
}
Self {
safetensors: Some((routing, safetensors)),
device,
dtype,
}
}
pub fn zeros(dtype: DType, device: Device) -> Self {
Self {
safetensors: None,
device,
dtype,
}
}
pub fn get<S: Into<Shape>>(&self, s: S, tensor_name: &str) -> candle::Result<Tensor> {
let s: Shape = s.into();
match &self.safetensors {
None => Tensor::zeros(s, self.dtype, &self.device),
Some((routing, safetensors)) => {
// Unwrap or 0 just to let the proper error flow.
let index = routing.get(tensor_name).unwrap_or(&0);
let tensor = safetensors[*index]
.tensor(tensor_name, &self.device)?
.to_dtype(self.dtype)?;
if *tensor.shape() != s {
let msg = format!("shape mismatch for {tensor_name}");
Err(candle::Error::UnexpectedShape {
msg,
expected: s,
got: tensor.shape().clone(),
})?
}
Ok(tensor)
}
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Deserialize)]
#[serde(rename_all = "lowercase")]
enum HiddenAct {
Gelu,
Relu,
}
impl HiddenAct {
fn forward(&self, xs: &Tensor) -> candle::Result<Tensor> {
match self {
// TODO: The all-MiniLM-L6-v2 model uses "gelu" whereas this is "gelu_new", this explains some
// small numerical difference.
// https://github.com/huggingface/transformers/blob/cd4584e3c809bb9e1392ccd3fe38b40daba5519a/src/transformers/activations.py#L213
Self::Gelu => xs.gelu(),
Self::Relu => xs.relu(),
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Deserialize)]
#[serde(rename_all = "lowercase")]
enum PositionEmbeddingType {
Absolute,
}
// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/configuration_bert.py#L1
#[derive(Debug, Clone, PartialEq, Deserialize)]
struct Config {
vocab_size: usize,
hidden_size: usize,
num_hidden_layers: usize,
num_attention_heads: usize,
intermediate_size: usize,
hidden_act: HiddenAct,
hidden_dropout_prob: f64,
max_position_embeddings: usize,
type_vocab_size: usize,
initializer_range: f64,
layer_norm_eps: f64,
pad_token_id: usize,
position_embedding_type: PositionEmbeddingType,
use_cache: bool,
classifier_dropout: Option<f64>,
}
impl Default for Config {
fn default() -> Self {
Self {
vocab_size: 30522,
hidden_size: 768,
num_hidden_layers: 12,
num_attention_heads: 12,
intermediate_size: 3072,
hidden_act: HiddenAct::Gelu,
hidden_dropout_prob: 0.1,
max_position_embeddings: 512,
type_vocab_size: 2,
initializer_range: 0.02,
layer_norm_eps: 1e-12,
pad_token_id: 0,
position_embedding_type: PositionEmbeddingType::Absolute,
use_cache: true,
classifier_dropout: None,
}
}
}
impl Config {
fn all_mini_lm_l6_v2() -> Self {
// https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2/blob/main/config.json
Self {
vocab_size: 30522,
hidden_size: 384,
num_hidden_layers: 6,
num_attention_heads: 12,
intermediate_size: 1536,
hidden_act: HiddenAct::Gelu,
hidden_dropout_prob: 0.1,
max_position_embeddings: 512,
type_vocab_size: 2,
initializer_range: 0.02,
layer_norm_eps: 1e-12,
pad_token_id: 0,
position_embedding_type: PositionEmbeddingType::Absolute,
use_cache: true,
classifier_dropout: None,
}
}
}
struct Embedding {
embeddings: Tensor,
hidden_size: usize,
}
impl Embedding {
fn new(embeddings: Tensor, hidden_size: usize) -> Self {
Self {
embeddings,
hidden_size,
}
}
fn load(vocab_size: usize, hidden_size: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
let embeddings = vb.get((vocab_size, hidden_size), &format!("{p}.weight"))?;
Ok(Self::new(embeddings, hidden_size))
}
fn forward(&self, indexes: &Tensor) -> Result<Tensor> {
let mut final_dims = indexes.dims().to_vec();
final_dims.push(self.hidden_size);
let indexes = indexes.flatten_all()?;
let values = Tensor::embedding(&indexes, &self.embeddings)?;
let values = values.reshape(final_dims)?;
Ok(values)
}
}
struct Linear {
weight: Tensor,
bias: Tensor,
}
impl Linear {
fn new(weight: Tensor, bias: Tensor) -> Self {
Self { weight, bias }
}
fn load(size1: usize, size2: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
let weight = vb.get((size2, size1), &format!("{p}.weight"))?;
let bias = vb.get(size2, &format!("{p}.bias"))?;
Ok(Self::new(weight, bias))
}
fn forward(&self, x: &Tensor) -> Result<Tensor> {
let (bsize, _, _) = x.shape().r3()?;
let w = self.weight.broadcast_left(bsize)?.t()?;
let x = x.matmul(&w)?;
let x = x.broadcast_add(&self.bias)?;
Ok(x)
}
}
struct Dropout {
pr: f64,
}
impl Dropout {
fn new(pr: f64) -> Self {
Self { pr }
}
fn forward(&self, x: &Tensor) -> Result<Tensor> {
// TODO
Ok(x.clone())
}
}
// This layer norm version handles both weight and bias so removes the mean.
struct LayerNorm {
weight: Tensor,
bias: Tensor,
eps: f64,
}
impl LayerNorm {
fn new(weight: Tensor, bias: Tensor, eps: f64) -> Self {
Self { weight, bias, eps }
}
fn load(size: usize, eps: f64, p: &str, vb: &VarBuilder) -> Result<Self> {
let (weight, bias) = match (
vb.get(size, &format!("{p}.weight")),
vb.get(size, &format!("{p}.bias")),
) {
(Ok(weight), Ok(bias)) => (weight, bias),
(Err(err), _) | (_, Err(err)) => {
if let (Ok(weight), Ok(bias)) = (
vb.get(size, &format!("{p}.gamma")),
vb.get(size, &format!("{p}.beta")),
) {
(weight, bias)
} else {
return Err(err.into());
}
}
};
Ok(Self { weight, bias, eps })
}
fn forward(&self, x: &Tensor) -> Result<Tensor> {
let (_bsize, _seq_len, hidden_size) = x.shape().r3()?;
let mean_x = (x.sum(&[2])? / hidden_size as f64)?;
let x = x.broadcast_sub(&mean_x)?;
let norm_x = ((&x * &x)?.sum(&[2])? / hidden_size as f64)?;
let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?;
let x = x_normed
.broadcast_mul(&self.weight)?
.broadcast_add(&self.bias)?;
Ok(x)
}
}
// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L180
struct BertEmbeddings {
word_embeddings: Embedding,
position_embeddings: Option<Embedding>,
token_type_embeddings: Embedding,
layer_norm: LayerNorm,
dropout: Dropout,
position_ids: Tensor,
token_type_ids: Tensor,
}
impl BertEmbeddings {
fn load(p: &str, vb: &VarBuilder, config: &Config) -> Result<Self> {
let word_embeddings = Embedding::load(
config.vocab_size,
config.hidden_size,
&format!("{p}.word_embeddings"),
vb,
)?;
let position_embeddings = Embedding::load(
config.max_position_embeddings,
config.hidden_size,
&format!("{p}.position_embeddings"),
vb,
)?;
let token_type_embeddings = Embedding::load(
config.type_vocab_size,
config.hidden_size,
&format!("{p}.token_type_embeddings"),
vb,
)?;
let layer_norm = LayerNorm::load(
config.hidden_size,
config.layer_norm_eps,
&format!("{p}.LayerNorm"),
vb,
)?;
let position_ids: Vec<_> = (0..config.max_position_embeddings as u32).collect();
let position_ids = Tensor::new(&position_ids[..], &vb.device)?.unsqueeze(0)?;
let token_type_ids = position_ids.zeros_like()?;
Ok(Self {
word_embeddings,
position_embeddings: Some(position_embeddings),
token_type_embeddings,
layer_norm,
dropout: Dropout::new(config.hidden_dropout_prob),
position_ids,
token_type_ids,
})
}
fn forward(&self, input_ids: &Tensor, token_type_ids: &Tensor) -> Result<Tensor> {
let (_bsize, seq_len) = input_ids.shape().r2()?;
let input_embeddings = self.word_embeddings.forward(input_ids)?;
let token_type_embeddings = self.token_type_embeddings.forward(token_type_ids)?;
let mut embeddings = (&input_embeddings + token_type_embeddings)?;
if let Some(position_embeddings) = &self.position_embeddings {
// TODO: Proper absolute positions?
let position_ids = (0..seq_len as u32).collect::<Vec<_>>();
let position_ids = Tensor::new(&position_ids[..], &input_ids.device())?;
embeddings = embeddings.broadcast_add(&position_embeddings.forward(&position_ids)?)?
}
let embeddings = self.layer_norm.forward(&embeddings)?;
let embeddings = self.dropout.forward(&embeddings)?;
Ok(embeddings)
}
}
struct BertSelfAttention {
query: Linear,
key: Linear,
value: Linear,
dropout: Dropout,
num_attention_heads: usize,
attention_head_size: usize,
}
impl BertSelfAttention {
fn load(p: &str, vb: &VarBuilder, config: &Config) -> Result<Self> {
let attention_head_size = config.hidden_size / config.num_attention_heads;
let all_head_size = config.num_attention_heads * attention_head_size;
let dropout = Dropout::new(config.hidden_dropout_prob);
let hidden_size = config.hidden_size;
let query = Linear::load(hidden_size, all_head_size, &format!("{p}.query"), vb)?;
let value = Linear::load(hidden_size, all_head_size, &format!("{p}.value"), vb)?;
let key = Linear::load(hidden_size, all_head_size, &format!("{p}.key"), vb)?;
Ok(Self {
query,
key,
value,
dropout,
num_attention_heads: config.num_attention_heads,
attention_head_size,
})
}
fn transpose_for_scores(&self, xs: &Tensor) -> Result<Tensor> {
let mut new_x_shape = xs.dims().to_vec();
new_x_shape.pop();
new_x_shape.push(self.num_attention_heads);
new_x_shape.push(self.attention_head_size);
// Be cautious about the transposition if adding a batch dim!
let xs = xs.reshape(new_x_shape.as_slice())?.transpose(1, 2)?;
Ok(xs.contiguous()?)
}
fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
let query_layer = self.query.forward(hidden_states)?;
let key_layer = self.key.forward(hidden_states)?;
let value_layer = self.value.forward(hidden_states)?;
let query_layer = self.transpose_for_scores(&query_layer)?;
let key_layer = self.transpose_for_scores(&key_layer)?;
let value_layer = self.transpose_for_scores(&value_layer)?;
let attention_scores = query_layer.matmul(&key_layer.t()?)?;
let attention_scores = (attention_scores / (self.attention_head_size as f64).sqrt())?;
let attention_probs = attention_scores.softmax(attention_scores.rank() - 1)?;
let attention_probs = self.dropout.forward(&attention_probs)?;
let context_layer = attention_probs.matmul(&value_layer)?;
let context_layer = context_layer.transpose(1, 2)?.contiguous()?;
let context_layer = context_layer.flatten(Some(context_layer.rank() - 2), None)?;
Ok(context_layer)
}
}
struct BertSelfOutput {
dense: Linear,
layer_norm: LayerNorm,
dropout: Dropout,
}
impl BertSelfOutput {
fn load(p: &str, vb: &VarBuilder, config: &Config) -> Result<Self> {
let dense = Linear::load(
config.hidden_size,
config.hidden_size,
&format!("{p}.dense"),
vb,
)?;
let layer_norm = LayerNorm::load(
config.hidden_size,
config.layer_norm_eps,
&format!("{p}.LayerNorm"),
vb,
)?;
let dropout = Dropout::new(config.hidden_dropout_prob);
Ok(Self {
dense,
layer_norm,
dropout,
})
}
fn forward(&self, hidden_states: &Tensor, input_tensor: &Tensor) -> Result<Tensor> {
let hidden_states = self.dense.forward(hidden_states)?;
let hidden_states = self.dropout.forward(&hidden_states)?;
self.layer_norm.forward(&(hidden_states + input_tensor)?)
}
}
// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L392
struct BertAttention {
self_attention: BertSelfAttention,
self_output: BertSelfOutput,
}
impl BertAttention {
fn load(p: &str, vb: &VarBuilder, config: &Config) -> Result<Self> {
let self_attention = BertSelfAttention::load(&format!("{p}.self"), vb, config)?;
let self_output = BertSelfOutput::load(&format!("{p}.output"), vb, config)?;
Ok(Self {
self_attention,
self_output,
})
}
fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
let self_outputs = self.self_attention.forward(hidden_states)?;
let attention_output = self.self_output.forward(&self_outputs, hidden_states)?;
Ok(attention_output)
}
}
// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L441
struct BertIntermediate {
dense: Linear,
intermediate_act: HiddenAct,
}
impl BertIntermediate {
fn load(p: &str, vb: &VarBuilder, config: &Config) -> Result<Self> {
let dense = Linear::load(
config.hidden_size,
config.intermediate_size,
&format!("{p}.dense"),
vb,
)?;
Ok(Self {
dense,
intermediate_act: config.hidden_act,
})
}
fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
let hidden_states = self.dense.forward(hidden_states)?;
let ys = self.intermediate_act.forward(&hidden_states)?;
Ok(ys)
}
}
// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L456
struct BertOutput {
dense: Linear,
layer_norm: LayerNorm,
dropout: Dropout,
}
impl BertOutput {
fn load(p: &str, vb: &VarBuilder, config: &Config) -> Result<Self> {
let dense = Linear::load(
config.intermediate_size,
config.hidden_size,
&format!("{p}.dense"),
vb,
)?;
let layer_norm = LayerNorm::load(
config.hidden_size,
config.layer_norm_eps,
&format!("{p}.LayerNorm"),
vb,
)?;
let dropout = Dropout::new(config.hidden_dropout_prob);
Ok(Self {
dense,
layer_norm,
dropout,
})
}
fn forward(&self, hidden_states: &Tensor, input_tensor: &Tensor) -> Result<Tensor> {
let hidden_states = self.dense.forward(hidden_states)?;
let hidden_states = self.dropout.forward(&hidden_states)?;
self.layer_norm.forward(&(hidden_states + input_tensor)?)
}
}
// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L470
struct BertLayer {
attention: BertAttention,
intermediate: BertIntermediate,
output: BertOutput,
}
impl BertLayer {
fn load(p: &str, vb: &VarBuilder, config: &Config) -> Result<Self> {
let attention = BertAttention::load(&format!("{p}.attention"), vb, config)?;
let intermediate = BertIntermediate::load(&format!("{p}.intermediate"), vb, config)?;
let output = BertOutput::load(&format!("{p}.output"), vb, config)?;
Ok(Self {
attention,
intermediate,
output,
})
}
fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
let attention_output = self.attention.forward(hidden_states)?;
// TODO: Support cross-attention?
// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L523
// TODO: Support something similar to `apply_chunking_to_forward`?
let intermediate_output = self.intermediate.forward(&attention_output)?;
let layer_output = self
.output
.forward(&intermediate_output, &attention_output)?;
Ok(layer_output)
}
}
// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L556
struct BertEncoder {
layers: Vec<BertLayer>,
}
impl BertEncoder {
fn load(p: &str, vb: &VarBuilder, config: &Config) -> Result<Self> {
let layers = (0..config.num_hidden_layers)
.map(|index| {
let p = format!("{p}.layer.{index}");
BertLayer::load(&p, vb, config)
})
.collect::<Result<Vec<_>>>()?;
Ok(BertEncoder { layers })
}
fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
let mut hidden_states = hidden_states.clone();
// Use a loop rather than a fold as it's easier to modify when adding debug/...
for layer in self.layers.iter() {
hidden_states = layer.forward(&hidden_states)?
}
Ok(hidden_states)
}
}
// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L874
struct BertModel {
embeddings: BertEmbeddings,
encoder: BertEncoder,
}
impl BertModel {
fn load(vb: &VarBuilder, config: &Config) -> Result<Self> {
let (embeddings, encoder) = match (
BertEmbeddings::load("embeddings", vb, config),
BertEncoder::load("encoder", vb, config),
) {
(Ok(embeddings), Ok(encoder)) => (embeddings, encoder),
(Err(err), _) | (_, Err(err)) => {
match (
BertEmbeddings::load("bert.embeddings", vb, config),
BertEncoder::load("bert.encoder", vb, config),
) {
(Ok(embeddings), Ok(encoder)) => (embeddings, encoder),
_ => return Err(err),
}
}
};
Ok(Self {
embeddings,
encoder,
})
}
fn forward(&self, input_ids: &Tensor, token_type_ids: &Tensor) -> Result<Tensor> {
let embedding_output = self.embeddings.forward(input_ids, token_type_ids)?;
let sequence_output = self.encoder.forward(&embedding_output)?;
Ok(sequence_output)
}
}
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Run offline (you must have the files already cached)
#[arg(long)]
offline: bool,
#[arg(long)]
model_id: Option<String>,
#[arg(long)]
revision: Option<String>,
}
#[tokio::main]
async fn main() -> Result<()> {
use tokenizers::Tokenizer;
let start = std::time::Instant::now();
println!("Building {:?}", start.elapsed());
let args = Args::parse();
let device = if args.cpu {
Device::Cpu
} else {
Device::new_cuda(0)?
};
let default_model = "sentence-transformers/all-MiniLM-L6-v2".to_string();
let default_revision = "refs/pr/21".to_string();
let (model_id, revision) = match (args.model_id, args.revision) {
(Some(model_id), Some(revision)) => (model_id, revision),
(Some(model_id), None) => (model_id, "main".to_string()),
(None, Some(revision)) => (default_model, revision),
(None, None) => (default_model, default_revision),
};
let repo = Repo::with_revision(model_id, RepoType::Model, revision);
let (config_filename, tokenizer_filename, weights_filename) = if args.offline {
let cache = Cache::default();
(
cache
.get(&repo, "config.json")
.ok_or(anyhow!("Missing config file in cache"))?,
cache
.get(&repo, "tokenizer.json")
.ok_or(anyhow!("Missing tokenizer file in cache"))?,
cache
.get(&repo, "model.safetensors")
.ok_or(anyhow!("Missing weights file in cache"))?,
)
} else {
let api = Api::new()?;
(
api.get(&repo, "config.json").await?,
api.get(&repo, "tokenizer.json").await?,
api.get(&repo, "model.safetensors").await?,
)
};
println!("Building {:?}", start.elapsed());
let config = std::fs::read_to_string(config_filename)?;
let config: Config = serde_json::from_str(&config)?;
println!("Config loaded {:?}", start.elapsed());
let mut tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
let tokenizer = tokenizer.with_padding(None).with_truncation(None);
println!("Tokenizer loaded {:?}", start.elapsed());
let weights = unsafe { candle::safetensors::MmapedFile::new(weights_filename)? };
let weights = weights.deserialize()?;
let vb = VarBuilder::from_safetensors(vec![weights], DTYPE, device.clone());
let model = BertModel::load(&vb, &config)?;
println!("Loaded {:?}", start.elapsed());
let tokens = tokenizer
.encode("This is an example sentence", true)
.map_err(E::msg)?
.get_ids()
.to_vec();
let token_ids = Tensor::new(&tokens[..], &device)?.unsqueeze(0)?;
let token_type_ids = token_ids.zeros_like()?;
println!("Loaded and encoded {:?}", start.elapsed());
for _ in 0..100 {
let start = std::time::Instant::now();
let _ys = model.forward(&token_ids, &token_type_ids)?;
println!("Took {:?}", start.elapsed());
// println!("Ys {:?}", ys.shape());
}
Ok(())
}