mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 18:28:24 +00:00
618 lines
20 KiB
Rust
618 lines
20 KiB
Rust
#![allow(dead_code)]
|
|
// The tokenizer.json and weights should be retrieved from:
|
|
// https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
|
|
|
|
use anyhow::{Error as E, Result};
|
|
use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor};
|
|
use clap::Parser;
|
|
use std::collections::HashMap;
|
|
|
|
const DTYPE: DType = DType::F32;
|
|
|
|
struct VarBuilder<'a> {
|
|
safetensors: Option<(HashMap<String, usize>, Vec<SafeTensors<'a>>)>,
|
|
dtype: DType,
|
|
device: Device,
|
|
}
|
|
|
|
impl<'a> VarBuilder<'a> {
|
|
pub fn from_safetensors(
|
|
safetensors: Vec<SafeTensors<'a>>,
|
|
dtype: DType,
|
|
device: Device,
|
|
) -> Self {
|
|
let mut routing = HashMap::new();
|
|
for (index, sf) in safetensors.iter().enumerate() {
|
|
for k in sf.names() {
|
|
routing.insert(k.to_string(), index);
|
|
}
|
|
}
|
|
Self {
|
|
safetensors: Some((routing, safetensors)),
|
|
device,
|
|
dtype,
|
|
}
|
|
}
|
|
|
|
pub fn zeros(dtype: DType, device: Device) -> Self {
|
|
Self {
|
|
safetensors: None,
|
|
device,
|
|
dtype,
|
|
}
|
|
}
|
|
|
|
pub fn get<S: Into<Shape>>(&self, s: S, tensor_name: &str) -> candle::Result<Tensor> {
|
|
let s: Shape = s.into();
|
|
match &self.safetensors {
|
|
None => Tensor::zeros(s, self.dtype, &self.device),
|
|
Some((routing, safetensors)) => {
|
|
// Unwrap or 0 just to let the proper error flow.
|
|
let index = routing.get(tensor_name).unwrap_or(&0);
|
|
let tensor = safetensors[*index]
|
|
.tensor(tensor_name, &self.device)?
|
|
.to_dtype(self.dtype)?;
|
|
if *tensor.shape() != s {
|
|
let msg = format!("shape mismatch for {tensor_name}");
|
|
Err(candle::Error::UnexpectedShape {
|
|
msg,
|
|
expected: s,
|
|
got: tensor.shape().clone(),
|
|
})?
|
|
}
|
|
Ok(tensor)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
|
enum HiddenAct {
|
|
Gelu,
|
|
Relu,
|
|
}
|
|
|
|
impl HiddenAct {
|
|
fn forward(&self, xs: &Tensor) -> candle::Result<Tensor> {
|
|
match self {
|
|
Self::Gelu => xs.gelu(),
|
|
Self::Relu => xs.relu(),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
|
enum PositionEmbeddingType {
|
|
Absolute,
|
|
}
|
|
|
|
// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/configuration_bert.py#L1
|
|
#[derive(Debug, Clone, PartialEq)]
|
|
struct Config {
|
|
vocab_size: usize,
|
|
hidden_size: usize,
|
|
num_hidden_layers: usize,
|
|
num_attention_heads: usize,
|
|
intermediate_size: usize,
|
|
hidden_act: HiddenAct,
|
|
hidden_dropout_prob: f64,
|
|
max_position_embeddings: usize,
|
|
type_vocab_size: usize,
|
|
initializer_range: f64,
|
|
layer_norm_eps: f64,
|
|
pad_token_id: usize,
|
|
position_embedding_type: PositionEmbeddingType,
|
|
use_cache: bool,
|
|
classifier_dropout: Option<f64>,
|
|
}
|
|
|
|
impl Default for Config {
|
|
fn default() -> Self {
|
|
Self {
|
|
vocab_size: 30522,
|
|
hidden_size: 768,
|
|
num_hidden_layers: 12,
|
|
num_attention_heads: 12,
|
|
intermediate_size: 3072,
|
|
hidden_act: HiddenAct::Gelu,
|
|
hidden_dropout_prob: 0.1,
|
|
max_position_embeddings: 512,
|
|
type_vocab_size: 2,
|
|
initializer_range: 0.02,
|
|
layer_norm_eps: 1e-12,
|
|
pad_token_id: 0,
|
|
position_embedding_type: PositionEmbeddingType::Absolute,
|
|
use_cache: true,
|
|
classifier_dropout: None,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Config {
|
|
fn all_mini_lm_l6_v2() -> Self {
|
|
// https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2/blob/main/config.json
|
|
Self {
|
|
vocab_size: 30522,
|
|
hidden_size: 384,
|
|
num_hidden_layers: 6,
|
|
num_attention_heads: 12,
|
|
intermediate_size: 1536,
|
|
hidden_act: HiddenAct::Gelu,
|
|
hidden_dropout_prob: 0.1,
|
|
max_position_embeddings: 512,
|
|
type_vocab_size: 2,
|
|
initializer_range: 0.02,
|
|
layer_norm_eps: 1e-12,
|
|
pad_token_id: 0,
|
|
position_embedding_type: PositionEmbeddingType::Absolute,
|
|
use_cache: true,
|
|
classifier_dropout: None,
|
|
}
|
|
}
|
|
}
|
|
|
|
struct Embedding {
|
|
embeddings: Tensor,
|
|
}
|
|
|
|
impl Embedding {
|
|
fn new(embeddings: Tensor) -> Self {
|
|
Self { embeddings }
|
|
}
|
|
|
|
fn load(size1: usize, size2: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
|
|
let embeddings = vb.get((size1, size2), &format!("{p}.weight"))?;
|
|
Ok(Self::new(embeddings))
|
|
}
|
|
|
|
fn forward(&self, indexes: &Tensor) -> Result<Tensor> {
|
|
let values = Tensor::embedding(indexes, &self.embeddings)?;
|
|
Ok(values)
|
|
}
|
|
}
|
|
|
|
struct Linear {
|
|
weight: Tensor,
|
|
bias: Tensor,
|
|
}
|
|
|
|
impl Linear {
|
|
fn new(weight: Tensor, bias: Tensor) -> Self {
|
|
Self { weight, bias }
|
|
}
|
|
|
|
fn load(size1: usize, size2: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
|
|
let weight = vb.get((size2, size1), &format!("{p}.weight"))?;
|
|
let bias = vb.get(size2, &format!("{p}.bias"))?;
|
|
Ok(Self::new(weight, bias))
|
|
}
|
|
|
|
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
|
let x = x.matmul(&self.weight.t()?)?;
|
|
let x = x.broadcast_add(&self.bias)?;
|
|
Ok(x)
|
|
}
|
|
}
|
|
|
|
struct Dropout {
|
|
pr: f64,
|
|
}
|
|
|
|
impl Dropout {
|
|
fn new(pr: f64) -> Self {
|
|
Self { pr }
|
|
}
|
|
|
|
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
|
// TODO
|
|
Ok(x.clone())
|
|
}
|
|
}
|
|
|
|
// This layer norm version handles both weight and bias so removes the mean.
|
|
struct LayerNorm {
|
|
weight: Tensor,
|
|
bias: Tensor,
|
|
eps: f64,
|
|
}
|
|
|
|
impl LayerNorm {
|
|
fn new(weight: Tensor, bias: Tensor, eps: f64) -> Self {
|
|
Self { weight, bias, eps }
|
|
}
|
|
|
|
fn load(size: usize, eps: f64, p: &str, vb: &VarBuilder) -> Result<Self> {
|
|
let weight = vb.get(size, &format!("{p}.weight"))?;
|
|
let bias = vb.get(size, &format!("{p}.bias"))?;
|
|
Ok(Self { weight, bias, eps })
|
|
}
|
|
|
|
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
|
let (seq_len, hidden_size) = x.shape().r2()?;
|
|
let mean_x = (x.sum(&[1])? / hidden_size as f64)?;
|
|
let x = x.broadcast_sub(&mean_x)?;
|
|
let norm_x = ((&x * &x)?.sum(&[1])? / hidden_size as f64)?;
|
|
let norm_x = norm_x.broadcast_as((seq_len, hidden_size))?;
|
|
let x_normed = (x / (norm_x + self.eps)?.sqrt()?)?;
|
|
let x = x_normed
|
|
.broadcast_mul(&self.weight)?
|
|
.broadcast_add(&self.bias)?;
|
|
Ok(x)
|
|
}
|
|
}
|
|
|
|
// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L180
|
|
struct BertEmbeddings {
|
|
word_embeddings: Embedding,
|
|
position_embeddings: Option<Embedding>,
|
|
token_type_embeddings: Embedding,
|
|
layer_norm: LayerNorm,
|
|
dropout: Dropout,
|
|
position_ids: Tensor,
|
|
token_type_ids: Tensor,
|
|
}
|
|
|
|
impl BertEmbeddings {
|
|
fn load(p: &str, vb: &VarBuilder, config: &Config) -> Result<Self> {
|
|
let word_embeddings = Embedding::load(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
&format!("{p}.word_embeddings"),
|
|
vb,
|
|
)?;
|
|
let position_embeddings = Embedding::load(
|
|
config.max_position_embeddings,
|
|
config.hidden_size,
|
|
&format!("{p}.position_embeddings"),
|
|
vb,
|
|
)?;
|
|
let token_type_embeddings = Embedding::load(
|
|
config.type_vocab_size,
|
|
config.hidden_size,
|
|
&format!("{p}.token_type_embeddings"),
|
|
vb,
|
|
)?;
|
|
let layer_norm = LayerNorm::load(
|
|
config.hidden_size,
|
|
config.layer_norm_eps,
|
|
&format!("{p}.LayerNorm"),
|
|
vb,
|
|
)?;
|
|
let position_ids: Vec<_> = (0..config.max_position_embeddings as u32).collect();
|
|
let position_ids = Tensor::new(&position_ids[..], &vb.device)?.unsqueeze(0)?;
|
|
let token_type_ids = position_ids.zeros_like()?;
|
|
Ok(Self {
|
|
word_embeddings,
|
|
position_embeddings: Some(position_embeddings),
|
|
token_type_embeddings,
|
|
layer_norm,
|
|
dropout: Dropout::new(config.hidden_dropout_prob),
|
|
position_ids,
|
|
token_type_ids,
|
|
})
|
|
}
|
|
|
|
fn forward(&self, input_ids: &Tensor, token_type_ids: &Tensor) -> Result<Tensor> {
|
|
let seq_len = input_ids.shape().r1()?;
|
|
let input_embeddings = self.word_embeddings.forward(input_ids)?;
|
|
let token_type_embeddings = self.token_type_embeddings.forward(token_type_ids)?;
|
|
let mut embeddings = (&input_embeddings + token_type_embeddings)?;
|
|
if let Some(position_embeddings) = &self.position_embeddings {
|
|
// TODO: Proper absolute positions?
|
|
let position_ids = (0..seq_len as u32).collect::<Vec<_>>();
|
|
let position_ids = Tensor::new(&position_ids[..], &input_ids.device())?;
|
|
embeddings = (&embeddings + position_embeddings.forward(&position_ids)?)?
|
|
}
|
|
let embeddings = self.layer_norm.forward(&embeddings)?;
|
|
let embeddings = self.dropout.forward(&embeddings)?;
|
|
Ok(embeddings)
|
|
}
|
|
}
|
|
|
|
struct BertSelfAttention {
|
|
query: Linear,
|
|
key: Linear,
|
|
value: Linear,
|
|
dropout: Dropout,
|
|
num_attention_heads: usize,
|
|
attention_head_size: usize,
|
|
}
|
|
|
|
impl BertSelfAttention {
|
|
fn load(p: &str, vb: &VarBuilder, config: &Config) -> Result<Self> {
|
|
let attention_head_size = config.hidden_size / config.num_attention_heads;
|
|
let all_head_size = config.num_attention_heads * attention_head_size;
|
|
let dropout = Dropout::new(config.hidden_dropout_prob);
|
|
let hidden_size = config.hidden_size;
|
|
let query = Linear::load(hidden_size, all_head_size, &format!("{p}.query"), vb)?;
|
|
let value = Linear::load(hidden_size, all_head_size, &format!("{p}.value"), vb)?;
|
|
let key = Linear::load(hidden_size, all_head_size, &format!("{p}.key"), vb)?;
|
|
Ok(Self {
|
|
query,
|
|
key,
|
|
value,
|
|
dropout,
|
|
num_attention_heads: config.num_attention_heads,
|
|
attention_head_size,
|
|
})
|
|
}
|
|
|
|
fn transpose_for_scores(&self, xs: &Tensor) -> Result<Tensor> {
|
|
let mut new_x_shape = xs.dims().to_vec();
|
|
new_x_shape.pop();
|
|
new_x_shape.push(self.num_attention_heads);
|
|
new_x_shape.push(self.attention_head_size);
|
|
// Be cautious about the transposition if adding a batch dim!
|
|
let xs = xs.reshape(new_x_shape.as_slice())?.transpose(0, 1)?;
|
|
Ok(xs.contiguous()?)
|
|
}
|
|
|
|
fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
|
|
let query_layer = self.query.forward(hidden_states)?;
|
|
let key_layer = self.key.forward(hidden_states)?;
|
|
let value_layer = self.value.forward(hidden_states)?;
|
|
|
|
let query_layer = self.transpose_for_scores(&query_layer)?;
|
|
let key_layer = self.transpose_for_scores(&key_layer)?;
|
|
let value_layer = self.transpose_for_scores(&value_layer)?;
|
|
|
|
let attention_scores = query_layer.matmul(&key_layer.t()?)?;
|
|
let attention_scores = (attention_scores / (self.attention_head_size as f64).sqrt())?;
|
|
let attention_probs = attention_scores.softmax(attention_scores.rank() - 1)?;
|
|
let attention_probs = self.dropout.forward(&attention_probs)?;
|
|
|
|
let context_layer = attention_probs.matmul(&value_layer)?;
|
|
let context_layer = context_layer.transpose(0, 1)?.contiguous()?;
|
|
let context_layer = context_layer.flatten(Some(context_layer.rank() - 2), None)?;
|
|
Ok(context_layer)
|
|
}
|
|
}
|
|
|
|
struct BertSelfOutput {
|
|
dense: Linear,
|
|
layer_norm: LayerNorm,
|
|
dropout: Dropout,
|
|
}
|
|
|
|
impl BertSelfOutput {
|
|
fn load(p: &str, vb: &VarBuilder, config: &Config) -> Result<Self> {
|
|
let dense = Linear::load(
|
|
config.hidden_size,
|
|
config.hidden_size,
|
|
&format!("{p}.dense"),
|
|
vb,
|
|
)?;
|
|
let layer_norm = LayerNorm::load(
|
|
config.hidden_size,
|
|
config.layer_norm_eps,
|
|
&format!("{p}.LayerNorm"),
|
|
vb,
|
|
)?;
|
|
let dropout = Dropout::new(config.hidden_dropout_prob);
|
|
Ok(Self {
|
|
dense,
|
|
layer_norm,
|
|
dropout,
|
|
})
|
|
}
|
|
|
|
fn forward(&self, hidden_states: &Tensor, input_tensor: &Tensor) -> Result<Tensor> {
|
|
let hidden_states = self.dense.forward(hidden_states)?;
|
|
let hidden_states = self.dropout.forward(&hidden_states)?;
|
|
self.layer_norm.forward(&(hidden_states + input_tensor)?)
|
|
}
|
|
}
|
|
|
|
// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L392
|
|
struct BertAttention {
|
|
self_attention: BertSelfAttention,
|
|
self_output: BertSelfOutput,
|
|
}
|
|
|
|
impl BertAttention {
|
|
fn load(p: &str, vb: &VarBuilder, config: &Config) -> Result<Self> {
|
|
let self_attention = BertSelfAttention::load(&format!("{p}.self"), vb, config)?;
|
|
let self_output = BertSelfOutput::load(&format!("{p}.output"), vb, config)?;
|
|
Ok(Self {
|
|
self_attention,
|
|
self_output,
|
|
})
|
|
}
|
|
|
|
fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
|
|
let self_outputs = self.self_attention.forward(hidden_states)?;
|
|
let attention_output = self.self_output.forward(&self_outputs, hidden_states)?;
|
|
Ok(attention_output)
|
|
}
|
|
}
|
|
|
|
// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L441
|
|
struct BertIntermediate {
|
|
dense: Linear,
|
|
intermediate_act: HiddenAct,
|
|
}
|
|
|
|
impl BertIntermediate {
|
|
fn load(p: &str, vb: &VarBuilder, config: &Config) -> Result<Self> {
|
|
let dense = Linear::load(
|
|
config.hidden_size,
|
|
config.intermediate_size,
|
|
&format!("{p}.dense"),
|
|
vb,
|
|
)?;
|
|
Ok(Self {
|
|
dense,
|
|
intermediate_act: config.hidden_act,
|
|
})
|
|
}
|
|
|
|
fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
|
|
let hidden_states = self.dense.forward(hidden_states)?;
|
|
let ys = self.intermediate_act.forward(&hidden_states)?;
|
|
Ok(ys)
|
|
}
|
|
}
|
|
|
|
// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L456
|
|
struct BertOutput {
|
|
dense: Linear,
|
|
layer_norm: LayerNorm,
|
|
dropout: Dropout,
|
|
}
|
|
|
|
impl BertOutput {
|
|
fn load(p: &str, vb: &VarBuilder, config: &Config) -> Result<Self> {
|
|
let dense = Linear::load(
|
|
config.intermediate_size,
|
|
config.hidden_size,
|
|
&format!("{p}.dense"),
|
|
vb,
|
|
)?;
|
|
let layer_norm = LayerNorm::load(
|
|
config.hidden_size,
|
|
config.layer_norm_eps,
|
|
&format!("{p}.LayerNorm"),
|
|
vb,
|
|
)?;
|
|
let dropout = Dropout::new(config.hidden_dropout_prob);
|
|
Ok(Self {
|
|
dense,
|
|
layer_norm,
|
|
dropout,
|
|
})
|
|
}
|
|
|
|
fn forward(&self, hidden_states: &Tensor, input_tensor: &Tensor) -> Result<Tensor> {
|
|
let hidden_states = self.dense.forward(hidden_states)?;
|
|
let hidden_states = self.dropout.forward(&hidden_states)?;
|
|
self.layer_norm.forward(&(hidden_states + input_tensor)?)
|
|
}
|
|
}
|
|
|
|
// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L470
|
|
struct BertLayer {
|
|
attention: BertAttention,
|
|
intermediate: BertIntermediate,
|
|
output: BertOutput,
|
|
}
|
|
|
|
impl BertLayer {
|
|
fn load(p: &str, vb: &VarBuilder, config: &Config) -> Result<Self> {
|
|
let attention = BertAttention::load(&format!("{p}.attention"), vb, config)?;
|
|
let intermediate = BertIntermediate::load(&format!("{p}.intermediate"), vb, config)?;
|
|
let output = BertOutput::load(&format!("{p}.output"), vb, config)?;
|
|
Ok(Self {
|
|
attention,
|
|
intermediate,
|
|
output,
|
|
})
|
|
}
|
|
|
|
fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
|
|
let attention_output = self.attention.forward(hidden_states)?;
|
|
// TODO: Support cross-attention?
|
|
// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L523
|
|
// TODO: Support something similar to `apply_chunking_to_forward`?
|
|
let intermediate_output = self.intermediate.forward(&attention_output)?;
|
|
let layer_output = self
|
|
.output
|
|
.forward(&intermediate_output, &attention_output)?;
|
|
Ok(layer_output)
|
|
}
|
|
}
|
|
|
|
// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L556
|
|
struct BertEncoder {
|
|
layers: Vec<BertLayer>,
|
|
}
|
|
|
|
impl BertEncoder {
|
|
fn load(p: &str, vb: &VarBuilder, config: &Config) -> Result<Self> {
|
|
let layers = (0..config.num_hidden_layers)
|
|
.map(|index| {
|
|
let p = format!("{p}.layer.{index}");
|
|
BertLayer::load(&p, vb, config)
|
|
})
|
|
.collect::<Result<Vec<_>>>()?;
|
|
Ok(BertEncoder { layers })
|
|
}
|
|
|
|
fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
|
|
let mut hidden_states = hidden_states.clone();
|
|
// Use a loop rather than a fold as it's easier to modify when adding debug/...
|
|
for layer in self.layers.iter() {
|
|
hidden_states = layer.forward(&hidden_states)?
|
|
}
|
|
Ok(hidden_states)
|
|
}
|
|
}
|
|
|
|
// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L874
|
|
struct BertModel {
|
|
embeddings: BertEmbeddings,
|
|
encoder: BertEncoder,
|
|
}
|
|
|
|
impl BertModel {
|
|
fn load(vb: &VarBuilder, config: &Config) -> Result<Self> {
|
|
let embeddings = BertEmbeddings::load("embeddings", vb, config)?;
|
|
let encoder = BertEncoder::load("encoder", vb, config)?;
|
|
Ok(Self {
|
|
embeddings,
|
|
encoder,
|
|
})
|
|
}
|
|
|
|
fn forward(&self, input_ids: &Tensor, token_type_ids: &Tensor) -> Result<Tensor> {
|
|
let embedding_output = self.embeddings.forward(input_ids, token_type_ids)?;
|
|
let sequence_output = self.encoder.forward(&embedding_output)?;
|
|
Ok(sequence_output)
|
|
}
|
|
}
|
|
|
|
#[derive(Parser, Debug)]
|
|
#[command(author, version, about, long_about = None)]
|
|
struct Args {
|
|
/// Run on CPU rather than on GPU.
|
|
#[arg(long)]
|
|
cpu: bool,
|
|
|
|
#[arg(long)]
|
|
tokenizer_config: String,
|
|
|
|
#[arg(long)]
|
|
weights: String,
|
|
}
|
|
|
|
fn main() -> Result<()> {
|
|
use tokenizers::Tokenizer;
|
|
|
|
let args = Args::parse();
|
|
let device = if args.cpu {
|
|
Device::Cpu
|
|
} else {
|
|
Device::new_cuda(0)?
|
|
};
|
|
|
|
let mut tokenizer = Tokenizer::from_file(args.tokenizer_config).map_err(E::msg)?;
|
|
let tokenizer = tokenizer.with_padding(None).with_truncation(None);
|
|
|
|
let weights = unsafe { candle::safetensors::MmapedFile::new(args.weights)? };
|
|
let weights = weights.deserialize()?;
|
|
let vb = VarBuilder::from_safetensors(vec![weights], DTYPE, device.clone());
|
|
let config = Config::all_mini_lm_l6_v2();
|
|
let model = BertModel::load(&vb, &config)?;
|
|
|
|
let tokens = tokenizer
|
|
.encode("This is an example sentence", true)
|
|
.map_err(E::msg)?
|
|
.get_ids()
|
|
.to_vec();
|
|
let token_ids = Tensor::new(&tokens[..], &device)?;
|
|
println!("{token_ids}");
|
|
let token_type_ids = token_ids.zeros_like()?;
|
|
let ys = model.forward(&token_ids, &token_type_ids)?;
|
|
println!("{ys}");
|
|
Ok(())
|
|
}
|