mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 02:38:10 +00:00
452 lines
14 KiB
Rust
452 lines
14 KiB
Rust
#![allow(dead_code)]
|
|
// https://github.com/openai/whisper/blob/main/whisper/model.py
|
|
// TODO:
|
|
// - kv-cache support?
|
|
|
|
use anyhow::{Error as E, Result};
|
|
use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor};
|
|
use clap::Parser;
|
|
use std::collections::HashMap;
|
|
|
|
const DTYPE: DType = DType::F32;
|
|
|
|
struct VarBuilder<'a> {
|
|
safetensors: Option<(HashMap<String, usize>, Vec<SafeTensors<'a>>)>,
|
|
dtype: DType,
|
|
device: Device,
|
|
}
|
|
|
|
impl<'a> VarBuilder<'a> {
|
|
pub fn from_safetensors(
|
|
safetensors: Vec<SafeTensors<'a>>,
|
|
dtype: DType,
|
|
device: Device,
|
|
) -> Self {
|
|
let mut routing = HashMap::new();
|
|
for (index, sf) in safetensors.iter().enumerate() {
|
|
for k in sf.names() {
|
|
routing.insert(k.to_string(), index);
|
|
}
|
|
}
|
|
Self {
|
|
safetensors: Some((routing, safetensors)),
|
|
device,
|
|
dtype,
|
|
}
|
|
}
|
|
|
|
pub fn zeros(dtype: DType, device: Device) -> Self {
|
|
Self {
|
|
safetensors: None,
|
|
device,
|
|
dtype,
|
|
}
|
|
}
|
|
|
|
pub fn get<S: Into<Shape>>(&self, s: S, tensor_name: &str) -> candle::Result<Tensor> {
|
|
let s: Shape = s.into();
|
|
match &self.safetensors {
|
|
None => Tensor::zeros(s, self.dtype, &self.device),
|
|
Some((routing, safetensors)) => {
|
|
// Unwrap or 0 just to let the proper error flow.
|
|
let index = routing.get(tensor_name).unwrap_or(&0);
|
|
let tensor = safetensors[*index]
|
|
.tensor(tensor_name, &self.device)?
|
|
.to_dtype(self.dtype)?;
|
|
if *tensor.shape() != s {
|
|
let msg = format!("shape mismatch for {tensor_name}");
|
|
Err(candle::Error::UnexpectedShape {
|
|
msg,
|
|
expected: s,
|
|
got: tensor.shape().clone(),
|
|
})?
|
|
}
|
|
Ok(tensor)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
|
enum HiddenAct {
|
|
Gelu,
|
|
Relu,
|
|
}
|
|
|
|
impl HiddenAct {
|
|
fn forward(&self, xs: &Tensor) -> candle::Result<Tensor> {
|
|
match self {
|
|
Self::Gelu => xs.gelu(),
|
|
Self::Relu => xs.relu(),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone, PartialEq)]
|
|
struct Config {
|
|
n_mels: usize,
|
|
n_audio_ctx: usize,
|
|
n_audio_state: usize,
|
|
n_audio_head: usize,
|
|
n_audio_layer: usize,
|
|
n_vocab: usize,
|
|
n_text_ctx: usize,
|
|
n_text_state: usize,
|
|
n_text_head: usize,
|
|
n_text_layer: usize,
|
|
}
|
|
|
|
struct Embedding {
|
|
embeddings: Tensor,
|
|
hidden_size: usize,
|
|
}
|
|
|
|
impl Embedding {
|
|
fn new(embeddings: Tensor, hidden_size: usize) -> Self {
|
|
Self {
|
|
embeddings,
|
|
hidden_size,
|
|
}
|
|
}
|
|
|
|
fn load(vocab_size: usize, hidden_size: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
|
|
let embeddings = vb.get((vocab_size, hidden_size), &format!("{p}.weight"))?;
|
|
Ok(Self::new(embeddings, hidden_size))
|
|
}
|
|
|
|
fn forward(&self, indexes: &Tensor) -> Result<Tensor> {
|
|
let mut final_dims = indexes.dims().to_vec();
|
|
final_dims.push(self.hidden_size);
|
|
let indexes = indexes.flatten_all()?;
|
|
let values = Tensor::embedding(&indexes, &self.embeddings)?;
|
|
let values = values.reshape(final_dims)?;
|
|
Ok(values)
|
|
}
|
|
}
|
|
|
|
struct Linear {
|
|
weight: Tensor,
|
|
bias: Option<Tensor>,
|
|
}
|
|
|
|
impl Linear {
|
|
fn load(size1: usize, size2: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
|
|
let weight = vb.get((size2, size1), &format!("{p}.weight"))?;
|
|
let bias = vb.get(size2, &format!("{p}.bias"))?;
|
|
Ok(Self {
|
|
weight,
|
|
bias: Some(bias),
|
|
})
|
|
}
|
|
|
|
fn load_no_bias(size1: usize, size2: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
|
|
let weight = vb.get((size2, size1), &format!("{p}.weight"))?;
|
|
Ok(Self { weight, bias: None })
|
|
}
|
|
|
|
fn forward(&self, x: &Tensor) -> candle::Result<Tensor> {
|
|
let (bsize, _, _) = x.shape().r3()?;
|
|
let w = self.weight.broadcast_left(bsize)?.t()?;
|
|
let x = x.matmul(&w)?;
|
|
match &self.bias {
|
|
None => Ok(x),
|
|
Some(bias) => x.broadcast_add(bias),
|
|
}
|
|
}
|
|
}
|
|
|
|
struct Dropout {
|
|
pr: f64,
|
|
}
|
|
|
|
impl Dropout {
|
|
fn new(pr: f64) -> Self {
|
|
Self { pr }
|
|
}
|
|
|
|
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
|
// TODO
|
|
Ok(x.clone())
|
|
}
|
|
}
|
|
|
|
// This layer norm version handles both weight and bias so removes the mean.
|
|
struct LayerNorm {
|
|
weight: Tensor,
|
|
bias: Tensor,
|
|
eps: f64,
|
|
}
|
|
|
|
impl LayerNorm {
|
|
fn load(size: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
|
|
let weight = vb.get(size, &format!("{p}.weight"))?;
|
|
let bias = vb.get(size, &format!("{p}.bias"))?;
|
|
Ok(Self {
|
|
weight,
|
|
bias,
|
|
eps: 1e-5,
|
|
})
|
|
}
|
|
|
|
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
|
let (_bsize, _seq_len, hidden_size) = x.shape().r3()?;
|
|
let mean_x = (x.sum(&[2])? / hidden_size as f64)?;
|
|
let x = x.broadcast_sub(&mean_x)?;
|
|
let norm_x = ((&x * &x)?.sum(&[2])? / hidden_size as f64)?;
|
|
let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?;
|
|
let x = x_normed
|
|
.broadcast_mul(&self.weight)?
|
|
.broadcast_add(&self.bias)?;
|
|
Ok(x)
|
|
}
|
|
}
|
|
|
|
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L62
|
|
struct MultiHeadAttention {
|
|
query: Linear,
|
|
key: Linear,
|
|
value: Linear,
|
|
out: Linear,
|
|
n_head: usize,
|
|
}
|
|
|
|
impl MultiHeadAttention {
|
|
fn load(n_state: usize, n_head: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
|
|
let query = Linear::load(n_state, n_state, &format!("{p}.query"), vb)?;
|
|
let value = Linear::load_no_bias(n_state, n_state, &format!("{p}.value"), vb)?;
|
|
let key = Linear::load(n_state, n_state, &format!("{p}.key"), vb)?;
|
|
let out = Linear::load(n_state, n_state, &format!("{p}.out"), vb)?;
|
|
Ok(Self {
|
|
query,
|
|
key,
|
|
value,
|
|
out,
|
|
n_head,
|
|
})
|
|
}
|
|
|
|
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
|
let q = self.query.forward(x)?;
|
|
let k = self.key.forward(x)?;
|
|
let v = self.value.forward(x)?;
|
|
let wv = self.qkv_attention(&q, &k, &v)?;
|
|
let out = self.out.forward(&wv)?;
|
|
Ok(out)
|
|
}
|
|
|
|
fn qkv_attention(&self, q: &Tensor, k: &Tensor, v: &Tensor) -> Result<Tensor> {
|
|
let (n_batch, n_ctx, n_state) = q.shape().r3()?;
|
|
let target_dims = &[n_batch, n_ctx, self.n_head, n_state / self.n_head];
|
|
let scale = ((n_state / self.n_head) as f64).powf(-0.25);
|
|
let q = (q.reshape(target_dims)?.transpose(1, 2)? * scale)?;
|
|
let k = (k.reshape(target_dims)?.transpose(1, 2)?.transpose(2, 3)? * scale)?;
|
|
let v = v.reshape(target_dims)?.transpose(1, 2)?;
|
|
let qk = q.matmul(&k)?;
|
|
let w = qk.softmax(qk.rank() - 1)?;
|
|
let wv = w.matmul(&v)?.transpose(1, 2)?.flatten(Some(2), None)?;
|
|
Ok(wv)
|
|
}
|
|
}
|
|
|
|
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L111
|
|
struct ResidualAttentionBlock {
|
|
attn: MultiHeadAttention,
|
|
attn_ln: LayerNorm,
|
|
cross_attn: Option<MultiHeadAttention>,
|
|
cross_attn_ln: Option<LayerNorm>,
|
|
mlp_linear1: Linear,
|
|
mlp_linear2: Linear,
|
|
mlp_ln: LayerNorm,
|
|
}
|
|
|
|
impl ResidualAttentionBlock {
|
|
fn load(n_state: usize, n_head: usize, ca: bool, p: &str, vb: &VarBuilder) -> Result<Self> {
|
|
let attn = MultiHeadAttention::load(n_state, n_head, &format!("{p}.attn"), vb)?;
|
|
let attn_ln = LayerNorm::load(n_state, &format!("{p}.attn_ln"), vb)?;
|
|
let (cross_attn, cross_attn_ln) = if ca {
|
|
let cross_attn =
|
|
MultiHeadAttention::load(n_state, n_head, &format!("{p}.cross_attn"), vb)?;
|
|
let cross_attn_ln = LayerNorm::load(n_state, &format!("{p}.cross_attn_ln"), vb)?;
|
|
(Some(cross_attn), Some(cross_attn_ln))
|
|
} else {
|
|
(None, None)
|
|
};
|
|
let n_mlp = n_state * 4;
|
|
let mlp_linear1 = Linear::load(n_state, n_mlp, &format!("{p}.mlp.0"), vb)?;
|
|
let mlp_linear2 = Linear::load(n_mlp, n_state, &format!("{p}.mlp.2"), vb)?;
|
|
let mlp_ln = LayerNorm::load(n_state, &format!("{p}.mlp_ln"), vb)?;
|
|
Ok(Self {
|
|
attn,
|
|
attn_ln,
|
|
cross_attn,
|
|
cross_attn_ln,
|
|
mlp_linear1,
|
|
mlp_linear2,
|
|
mlp_ln,
|
|
})
|
|
}
|
|
|
|
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
|
let attn = self.attn.forward(&self.attn_ln.forward(x)?)?;
|
|
let mut x = (x + attn)?;
|
|
// Cross-Attn
|
|
if let Some(cross_attn) = &self.cross_attn {
|
|
x = cross_attn.forward(&x)?
|
|
}
|
|
if let Some(cross_attn_ln) = &self.cross_attn_ln {
|
|
x = cross_attn_ln.forward(&x)?
|
|
}
|
|
// Mlp
|
|
let mlp = self.mlp_linear2.forward(
|
|
&self
|
|
.mlp_linear1
|
|
.forward(&self.mlp_ln.forward(&x)?)?
|
|
.gelu()?,
|
|
)?;
|
|
Ok((x + mlp)?)
|
|
}
|
|
}
|
|
|
|
fn sinusoids(length: usize, channels: usize) -> Result<Tensor> {
|
|
let max_timescale = 10000f32;
|
|
let log_timescale_increment = max_timescale.ln() / (channels / 2 - 1) as f32;
|
|
let inv_timescales: Vec<_> = (0..channels / 2)
|
|
.map(|i| (i as f32 * (-log_timescale_increment)).exp())
|
|
.collect();
|
|
let arange: Vec<_> = (0..length).map(|c| c as f32).collect();
|
|
let inv_timescales = Tensor::new(inv_timescales.as_slice(), &Device::Cpu)?.unsqueeze(0)?;
|
|
let arange = Tensor::new(arange.as_slice(), &Device::Cpu)?.unsqueeze(1)?;
|
|
let sh = (length, channels / 2);
|
|
let scaled_time = (arange.broadcast_as(sh)? * inv_timescales.broadcast_as(sh)?)?;
|
|
let sincos = Tensor::cat(&[scaled_time.sin()?, scaled_time.cos()?], 1)?;
|
|
Ok(sincos)
|
|
}
|
|
|
|
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L143
|
|
struct AudioEncoder {
|
|
conv1: Linear, // TODO
|
|
conv2: Linear, // TODO
|
|
positional_embedding: Tensor,
|
|
blocks: Vec<ResidualAttentionBlock>,
|
|
ln_post: LayerNorm,
|
|
}
|
|
|
|
impl AudioEncoder {
|
|
fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result<Self> {
|
|
let n_state = cfg.n_audio_state;
|
|
let n_head = cfg.n_audio_head;
|
|
let conv1 = Linear::load(cfg.n_mels, n_state, &format!("{p}.conv1"), vb)?;
|
|
let conv2 = Linear::load(n_state, n_state, &format!("{p}.conv2"), vb)?;
|
|
let positional_embedding = sinusoids(cfg.n_audio_ctx, n_state)?.to_device(&vb.device)?;
|
|
let blocks = (0..cfg.n_audio_layer)
|
|
.map(|i| {
|
|
ResidualAttentionBlock::load(n_state, n_head, false, &format!("{p}.blocks.{i}"), vb)
|
|
})
|
|
.collect::<Result<Vec<_>>>()?;
|
|
let ln_post = LayerNorm::load(n_state, &format!("{p}.ln_post"), vb)?;
|
|
Ok(Self {
|
|
conv1,
|
|
conv2,
|
|
positional_embedding,
|
|
blocks,
|
|
ln_post,
|
|
})
|
|
}
|
|
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
|
let x = self.conv1.forward(x)?.gelu()?;
|
|
let x = self.conv2.forward(&x)?.gelu()?;
|
|
let x = x.transpose(1, 2)?;
|
|
let mut x = x.broadcast_add(&self.positional_embedding)?;
|
|
for block in self.blocks.iter() {
|
|
x = block.forward(&x)?
|
|
}
|
|
let x = self.ln_post.forward(&x)?;
|
|
Ok(x)
|
|
}
|
|
}
|
|
|
|
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L176
|
|
struct TextDecoder {
|
|
token_embedding: Embedding,
|
|
blocks: Vec<ResidualAttentionBlock>,
|
|
ln: LayerNorm,
|
|
mask: Tensor,
|
|
}
|
|
|
|
impl TextDecoder {
|
|
fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result<Self> {
|
|
let n_state = cfg.n_text_state;
|
|
let n_head = cfg.n_text_head;
|
|
let token_embedding =
|
|
Embedding::load(cfg.n_vocab, n_state, &format!("{p}.token_embedding"), vb)?;
|
|
let blocks = (0..cfg.n_text_layer)
|
|
.map(|i| {
|
|
ResidualAttentionBlock::load(n_state, n_head, false, &format!("{p}.blocks.{i}"), vb)
|
|
})
|
|
.collect::<Result<Vec<_>>>()?;
|
|
let ln = LayerNorm::load(n_state, &format!("{p}.ln"), vb)?;
|
|
let mask = Tensor::new(&[0u32], &vb.device)?; // TODO
|
|
Ok(Self {
|
|
token_embedding,
|
|
blocks,
|
|
ln,
|
|
mask,
|
|
})
|
|
}
|
|
fn forward(&self, _tokens: &Tensor, _enc: &Tensor) -> Result<Tensor> {
|
|
todo!()
|
|
}
|
|
}
|
|
|
|
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L221
|
|
struct Whisper {
|
|
encoder: AudioEncoder,
|
|
decoder: TextDecoder,
|
|
}
|
|
|
|
impl Whisper {
|
|
fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result<Self> {
|
|
let encoder = AudioEncoder::load(&format!("{p}.encoder"), vb, cfg)?;
|
|
let decoder = TextDecoder::load(&format!("{p}.decoder"), vb, cfg)?;
|
|
Ok(Self { encoder, decoder })
|
|
}
|
|
fn forward(&self, mel: &Tensor, tokens: &Tensor) -> Result<Tensor> {
|
|
let enc = self.encoder.forward(mel)?;
|
|
let dec = self.decoder.forward(tokens, &enc)?;
|
|
Ok(dec)
|
|
}
|
|
}
|
|
|
|
#[derive(Parser, Debug)]
|
|
#[command(author, version, about, long_about = None)]
|
|
struct Args {
|
|
/// Run on CPU rather than on GPU.
|
|
#[arg(long)]
|
|
cpu: bool,
|
|
|
|
#[arg(long)]
|
|
tokenizer_config: String,
|
|
|
|
#[arg(long)]
|
|
weights: String,
|
|
}
|
|
|
|
fn main() -> Result<()> {
|
|
use tokenizers::Tokenizer;
|
|
|
|
let args = Args::parse();
|
|
let device = if args.cpu {
|
|
Device::Cpu
|
|
} else {
|
|
Device::new_cuda(0)?
|
|
};
|
|
|
|
let mut tokenizer = Tokenizer::from_file(args.tokenizer_config).map_err(E::msg)?;
|
|
let _tokenizer = tokenizer.with_padding(None).with_truncation(None);
|
|
|
|
let weights = unsafe { candle::safetensors::MmapedFile::new(args.weights)? };
|
|
let weights = weights.deserialize()?;
|
|
let _vb = VarBuilder::from_safetensors(vec![weights], DTYPE, device);
|
|
Ok(())
|
|
}
|