Files
candle/candle-nn/src/ops.rs
Laurent Mazare 5bb2fce998 Implement group-norm. (#334)
* Implement group-norm.

* Add some testing for group-norm.
2023-08-07 06:53:05 +01:00

45 lines
1.5 KiB
Rust

use candle::{Result, Tensor};
/// Applies the softmax function to the input tensor, rescaling the element so that elements on
/// a slice of fixed index on dimension `dim` are between 0 and 1 and sum to 1.
///
/// ```rust
/// use candle::{Tensor, Device};
/// let a = Tensor::new(&[[0f32, 1., 0., 1.], [-2., 2., 3., -3.]], &Device::Cpu)?;
/// let a = candle_nn::ops::softmax(&a, 1)?;
/// assert_eq!(
/// a.to_vec2::<f32>()?,
/// &[
/// [0.13447072, 0.3655293, 0.13447072, 0.3655293],
/// [0.0048928666, 0.26714146, 0.7261658, 0.0017999851]
/// ]);
/// # Ok::<(), candle::Error>(())
/// ```
pub fn softmax<D: candle::shape::Dim>(xs: &Tensor, dim: D) -> Result<Tensor> {
let dim = dim.to_index(xs.shape(), "softmax")?;
let max = xs.max_keepdim(dim)?;
let diff = xs.broadcast_sub(&max)?;
let num = diff.exp()?;
let den = num.sum_keepdim(dim)?;
num.broadcast_div(&den)
}
pub fn log_softmax<D: candle::shape::Dim>(xs: &Tensor, d: D) -> Result<Tensor> {
let d = d.to_index(xs.shape(), "log-softmax")?;
let max = xs.max_keepdim(d)?;
let diff = xs.broadcast_sub(&max)?;
let sum_exp = diff.exp()?.sum_keepdim(d)?;
let log_sm = diff.broadcast_sub(&sum_exp.log()?)?;
Ok(log_sm)
}
pub fn silu(xs: &Tensor) -> Result<Tensor> {
// TODO: Should we have a specialized op for this?
xs / (xs.neg()?.exp()? + 1.0)?
}
pub fn sigmoid(xs: &Tensor) -> Result<Tensor> {
// TODO: Should we have a specialized op for this?
(xs.neg()?.exp()? + 1.0)?.recip()
}