mirror of
https://github.com/huggingface/candle.git
synced 2025-06-19 19:58:35 +00:00
120 lines
4.5 KiB
Rust
120 lines
4.5 KiB
Rust
//! The CIFAR-10 dataset.
|
|
//!
|
|
//! The files can be downloaded from the following page:
|
|
//! <https://www.cs.toronto.edu/~kriz/cifar.html>
|
|
//! The binary version of the dataset is used.
|
|
use crate::vision::Dataset;
|
|
use candle::{DType, Device, Error, Result, Tensor};
|
|
use hf_hub::{api::sync::Api, Repo, RepoType};
|
|
use parquet::file::reader::{FileReader, SerializedFileReader};
|
|
use std::fs::File;
|
|
use std::io::{BufReader, Read};
|
|
|
|
const W: usize = 32;
|
|
const H: usize = 32;
|
|
const C: usize = 3;
|
|
const BYTES_PER_IMAGE: usize = W * H * C + 1;
|
|
const SAMPLES_PER_FILE: usize = 10000;
|
|
|
|
fn read_file(filename: &std::path::Path) -> Result<(Tensor, Tensor)> {
|
|
let mut buf_reader = BufReader::new(File::open(filename)?);
|
|
let mut data = vec![0u8; SAMPLES_PER_FILE * BYTES_PER_IMAGE];
|
|
buf_reader.read_exact(&mut data)?;
|
|
let mut images = vec![];
|
|
let mut labels = vec![];
|
|
for index in 0..SAMPLES_PER_FILE {
|
|
let content_offset = BYTES_PER_IMAGE * index;
|
|
labels.push(data[content_offset]);
|
|
images.push(&data[1 + content_offset..content_offset + BYTES_PER_IMAGE]);
|
|
}
|
|
let images: Vec<u8> = images
|
|
.iter()
|
|
.copied()
|
|
.flatten()
|
|
.copied()
|
|
.collect::<Vec<_>>();
|
|
let labels = Tensor::from_vec(labels, SAMPLES_PER_FILE, &Device::Cpu)?;
|
|
let images = Tensor::from_vec(images, (SAMPLES_PER_FILE, C, H, W), &Device::Cpu)?;
|
|
let images = (images.to_dtype(DType::F32)? / 255.)?;
|
|
Ok((images, labels))
|
|
}
|
|
|
|
pub fn load_dir<T: AsRef<std::path::Path>>(dir: T) -> Result<Dataset> {
|
|
let dir = dir.as_ref();
|
|
let (test_images, test_labels) = read_file(&dir.join("test_batch.bin"))?;
|
|
let train_images_and_labels = [
|
|
"data_batch_1.bin",
|
|
"data_batch_2.bin",
|
|
"data_batch_3.bin",
|
|
"data_batch_4.bin",
|
|
"data_batch_5.bin",
|
|
]
|
|
.iter()
|
|
.map(|x| read_file(&dir.join(x)))
|
|
.collect::<Result<Vec<_>>>()?;
|
|
let (train_images, train_labels): (Vec<_>, Vec<_>) =
|
|
train_images_and_labels.into_iter().unzip();
|
|
Ok(Dataset {
|
|
train_images: Tensor::cat(&train_images, 0)?,
|
|
train_labels: Tensor::cat(&train_labels, 0)?,
|
|
test_images,
|
|
test_labels,
|
|
labels: 10,
|
|
})
|
|
}
|
|
|
|
fn load_parquet(parquet: SerializedFileReader<std::fs::File>) -> Result<(Tensor, Tensor)> {
|
|
let samples = parquet.metadata().file_metadata().num_rows() as usize;
|
|
let mut buffer_images: Vec<u8> = Vec::with_capacity(samples * 1_024);
|
|
let mut buffer_labels: Vec<u8> = Vec::with_capacity(samples);
|
|
for row in parquet.into_iter().flatten() {
|
|
for (_name, field) in row.get_column_iter() {
|
|
if let parquet::record::Field::Group(subrow) = field {
|
|
for (_name, field) in subrow.get_column_iter() {
|
|
if let parquet::record::Field::Bytes(value) = field {
|
|
let image = image::load_from_memory(value.data()).unwrap();
|
|
buffer_images.extend(image.to_rgb8().as_raw());
|
|
}
|
|
}
|
|
} else if let parquet::record::Field::Long(label) = field {
|
|
buffer_labels.push(*label as u8);
|
|
}
|
|
}
|
|
}
|
|
let images = (Tensor::from_vec(buffer_images, (samples, 3, 32, 32), &Device::Cpu)?
|
|
.to_dtype(DType::U8)?
|
|
/ 255.)?;
|
|
let labels = Tensor::from_vec(buffer_labels, (samples,), &Device::Cpu)?;
|
|
Ok((images, labels))
|
|
}
|
|
|
|
pub fn load() -> Result<Dataset> {
|
|
let api = Api::new().map_err(|e| Error::Msg(format!("Api error: {e}")))?;
|
|
let dataset_id = "cifar10".to_string();
|
|
let repo = Repo::with_revision(
|
|
dataset_id,
|
|
RepoType::Dataset,
|
|
"refs/convert/parquet".to_string(),
|
|
);
|
|
let repo = api.repo(repo);
|
|
let test_parquet_filename = repo
|
|
.get("plain_text/test/0000.parquet")
|
|
.map_err(|e| Error::Msg(format!("Api error: {e}")))?;
|
|
let train_parquet_filename = repo
|
|
.get("plain_text/train/0000.parquet")
|
|
.map_err(|e| Error::Msg(format!("Api error: {e}")))?;
|
|
let test_parquet = SerializedFileReader::new(std::fs::File::open(test_parquet_filename)?)
|
|
.map_err(|e| Error::Msg(format!("Parquet error: {e}")))?;
|
|
let train_parquet = SerializedFileReader::new(std::fs::File::open(train_parquet_filename)?)
|
|
.map_err(|e| Error::Msg(format!("Parquet error: {e}")))?;
|
|
let (test_images, test_labels) = load_parquet(test_parquet)?;
|
|
let (train_images, train_labels) = load_parquet(train_parquet)?;
|
|
Ok(crate::vision::Dataset {
|
|
train_images,
|
|
train_labels,
|
|
test_images,
|
|
test_labels,
|
|
labels: 10,
|
|
})
|
|
}
|