mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 19:18:50 +00:00

* blip wasm start * fix dependency issue, move token stream here * vanilla js worker * roll back vscode * spell
262 lines
8.0 KiB
Rust
262 lines
8.0 KiB
Rust
use super::quantized_blip_text as blip_text;
|
|
use crate::quantized_nn::{layer_norm, linear, Linear};
|
|
pub use crate::quantized_var_builder::VarBuilder;
|
|
use candle::{Module, Result, Tensor, D};
|
|
use candle_nn::{Conv2d, Conv2dConfig, LayerNorm};
|
|
|
|
pub type VisionConfig = super::blip::VisionConfig;
|
|
pub type Config = super::blip::Config;
|
|
|
|
#[derive(Debug, Clone)]
|
|
struct VisionEmbeddings {
|
|
class_embedding: Tensor,
|
|
patch_embedding: Conv2d,
|
|
position_embedding: Tensor,
|
|
}
|
|
|
|
impl VisionEmbeddings {
|
|
fn new(cfg: &VisionConfig, vb: VarBuilder) -> Result<Self> {
|
|
let class_embedding = vb
|
|
.get((1, 1, cfg.hidden_size), "class_embedding")?
|
|
.dequantize(vb.device())?;
|
|
let conv_cfg = Conv2dConfig {
|
|
stride: cfg.patch_size,
|
|
..Default::default()
|
|
};
|
|
let pe_vb = vb.pp("patch_embedding");
|
|
let pe_weight = pe_vb
|
|
.get(
|
|
(cfg.hidden_size, 3, cfg.patch_size, cfg.patch_size),
|
|
"weight",
|
|
)?
|
|
.dequantize(vb.device())?;
|
|
let pe_bias = pe_vb
|
|
.get(cfg.hidden_size, "bias")?
|
|
.dequantize(vb.device())?;
|
|
|
|
let patch_embedding = Conv2d::new(pe_weight, Some(pe_bias), conv_cfg);
|
|
let num_patches1 = cfg.image_size / cfg.patch_size;
|
|
let num_patches = num_patches1 * num_patches1;
|
|
let num_positions = num_patches + 1;
|
|
let position_embedding = vb
|
|
.get((1, num_positions, cfg.hidden_size), "position_embedding")?
|
|
.dequantize(vb.device())?;
|
|
Ok(Self {
|
|
class_embedding,
|
|
patch_embedding,
|
|
position_embedding,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl Module for VisionEmbeddings {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
let target_dtype = xs.dtype();
|
|
let b_size = xs.dim(0)?;
|
|
let patch_embeds = xs.apply(&self.patch_embedding)?.flatten_from(2)?.t()?;
|
|
let d = self.class_embedding.dim(D::Minus1)?;
|
|
let class_embeds = self
|
|
.class_embedding
|
|
.broadcast_as((b_size, 1, d))?
|
|
.to_dtype(target_dtype)?;
|
|
let embeddings = Tensor::cat(&[&class_embeds, &patch_embeds], 1)?;
|
|
let position_embedding = self.position_embedding.narrow(1, 0, embeddings.dim(1)?)?;
|
|
embeddings.broadcast_add(&position_embedding)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
struct Attention {
|
|
qkv: Linear,
|
|
projection: Linear,
|
|
scale: f64,
|
|
num_heads: usize,
|
|
}
|
|
|
|
impl Attention {
|
|
fn new(cfg: &VisionConfig, vb: VarBuilder) -> Result<Self> {
|
|
let embed_dim = cfg.hidden_size;
|
|
let num_heads = cfg.num_attention_heads;
|
|
let head_dim = embed_dim / num_heads;
|
|
let scale = 1f64 / (head_dim as f64).sqrt();
|
|
let qkv = linear(embed_dim, 3 * embed_dim, vb.pp("qkv"))?;
|
|
let projection = linear(embed_dim, embed_dim, vb.pp("projection"))?;
|
|
Ok(Self {
|
|
qkv,
|
|
projection,
|
|
scale,
|
|
num_heads,
|
|
})
|
|
}
|
|
|
|
fn forward(&self, xs: &Tensor, attn_mask: Option<&Tensor>) -> Result<Tensor> {
|
|
let (b_sz, tgt_len, embed_dim) = xs.dims3()?;
|
|
let mixed_qkv = xs
|
|
.apply(&self.qkv)?
|
|
.reshape((b_sz, tgt_len, 3, self.num_heads, embed_dim / self.num_heads))?
|
|
.permute((2, 0, 3, 1, 4))?;
|
|
let query = mixed_qkv.get(0)?;
|
|
let key = mixed_qkv.get(1)?;
|
|
let value = mixed_qkv.get(2)?;
|
|
let attention_scores = query.matmul(&key.t()?)?;
|
|
let attention_scores = (attention_scores * self.scale)?;
|
|
let attention_probs = candle_nn::ops::softmax_last_dim(&attention_scores)?;
|
|
let attention_probs = match attn_mask {
|
|
None => attention_probs,
|
|
Some(attn_mask) => (attention_probs * attn_mask)?,
|
|
};
|
|
attention_probs
|
|
.matmul(&value)?
|
|
.permute((0, 2, 1, 3))?
|
|
.flatten_from(D::Minus2)?
|
|
.apply(&self.projection)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
#[allow(clippy::upper_case_acronyms)]
|
|
struct MLP {
|
|
activation_fn: candle_nn::Activation,
|
|
fc1: Linear,
|
|
fc2: Linear,
|
|
}
|
|
|
|
impl MLP {
|
|
fn new(cfg: &VisionConfig, vb: VarBuilder) -> Result<Self> {
|
|
let fc1 = linear(cfg.hidden_size, cfg.intermediate_size, vb.pp("fc1"))?;
|
|
let fc2 = linear(cfg.intermediate_size, cfg.hidden_size, vb.pp("fc2"))?;
|
|
Ok(Self {
|
|
activation_fn: cfg.hidden_act,
|
|
fc1,
|
|
fc2,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl Module for MLP {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
xs.apply(&self.fc1)?
|
|
.apply(&self.activation_fn)?
|
|
.apply(&self.fc2)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
struct EncoderLayer {
|
|
self_attn: Attention,
|
|
layer_norm1: LayerNorm,
|
|
mlp: MLP,
|
|
layer_norm2: LayerNorm,
|
|
}
|
|
|
|
impl EncoderLayer {
|
|
fn new(cfg: &VisionConfig, vb: VarBuilder) -> Result<Self> {
|
|
let embed_dim = cfg.hidden_size;
|
|
let self_attn = Attention::new(cfg, vb.pp("self_attn"))?;
|
|
let layer_norm1 = layer_norm(embed_dim, cfg.layer_norm_eps, vb.pp("layer_norm1"))?;
|
|
let layer_norm2 = layer_norm(embed_dim, cfg.layer_norm_eps, vb.pp("layer_norm2"))?;
|
|
let mlp = MLP::new(cfg, vb.pp("mlp"))?;
|
|
Ok(Self {
|
|
self_attn,
|
|
layer_norm1,
|
|
mlp,
|
|
layer_norm2,
|
|
})
|
|
}
|
|
|
|
fn forward(&self, xs: &Tensor, attention_mask: Option<&Tensor>) -> Result<Tensor> {
|
|
let residual = xs;
|
|
let xs = xs.apply(&self.layer_norm1)?;
|
|
let xs = self.self_attn.forward(&xs, attention_mask)?;
|
|
let xs = (xs + residual)?;
|
|
|
|
let residual = &xs;
|
|
let xs = xs.apply(&self.layer_norm2)?.apply(&self.mlp)?;
|
|
xs + residual
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
struct Encoder {
|
|
layers: Vec<EncoderLayer>,
|
|
}
|
|
|
|
impl Encoder {
|
|
fn new(cfg: &VisionConfig, vb: VarBuilder) -> Result<Self> {
|
|
let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
|
|
let vb = vb.pp("layers");
|
|
for i in 0..cfg.num_hidden_layers {
|
|
let layer = EncoderLayer::new(cfg, vb.pp(i))?;
|
|
layers.push(layer)
|
|
}
|
|
Ok(Self { layers })
|
|
}
|
|
|
|
fn forward(&self, xs: &Tensor, attention_mask: Option<&Tensor>) -> Result<Tensor> {
|
|
let mut xs = xs.clone();
|
|
for layer in self.layers.iter() {
|
|
xs = layer.forward(&xs, attention_mask)?
|
|
}
|
|
Ok(xs)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
pub struct VisionModel {
|
|
embeddings: VisionEmbeddings,
|
|
encoder: Encoder,
|
|
post_layernorm: LayerNorm,
|
|
}
|
|
|
|
impl VisionModel {
|
|
fn new(cfg: &VisionConfig, vb: VarBuilder) -> Result<Self> {
|
|
let embeddings = VisionEmbeddings::new(cfg, vb.pp("embeddings"))?;
|
|
let encoder = Encoder::new(cfg, vb.pp("encoder"))?;
|
|
let post_layernorm =
|
|
layer_norm(cfg.hidden_size, cfg.layer_norm_eps, vb.pp("post_layernorm"))?;
|
|
Ok(Self {
|
|
embeddings,
|
|
encoder,
|
|
post_layernorm,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl Module for VisionModel {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
let xs = xs.apply(&self.embeddings)?;
|
|
let encoder_outputs = self.encoder.forward(&xs, None)?;
|
|
// Return the last hidden state rather than pooled outputs.
|
|
encoder_outputs.apply(&self.post_layernorm)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
pub struct BlipForConditionalGeneration {
|
|
vision_model: VisionModel,
|
|
text_decoder: blip_text::TextLMHeadModel,
|
|
}
|
|
|
|
impl BlipForConditionalGeneration {
|
|
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
|
let vision_model = VisionModel::new(&cfg.vision_config, vb.pp("vision_model"))?;
|
|
let text_decoder =
|
|
blip_text::TextLMHeadModel::new(&cfg.text_config, vb.pp("text_decoder"))?;
|
|
Ok(Self {
|
|
vision_model,
|
|
text_decoder,
|
|
})
|
|
}
|
|
|
|
pub fn vision_model(&self) -> &VisionModel {
|
|
&self.vision_model
|
|
}
|
|
|
|
pub fn text_decoder(&mut self) -> &mut blip_text::TextLMHeadModel {
|
|
&mut self.text_decoder
|
|
}
|
|
pub fn reset_kv_cache(&mut self) {
|
|
self.text_decoder.reset_kv_cache();
|
|
}
|
|
}
|