Files
candle/candle-transformers/src/models/wuerstchen/diffnext.rs
Laurent Mazare a0c6d5548c Add the attention block. (#846)
* Add the attention block.

* Add more to clipnext.
2023-09-14 15:40:09 +01:00

97 lines
3.0 KiB
Rust

#![allow(unused)]
use super::common::{GlobalResponseNorm, ResBlock, TimestepBlock, WLayerNorm};
use candle::{DType, Module, Result, Tensor, D};
use candle_nn::VarBuilder;
#[derive(Debug)]
pub struct ResBlockStageB {
depthwise: candle_nn::Conv2d,
norm: WLayerNorm,
channelwise_lin1: candle_nn::Linear,
channelwise_grn: GlobalResponseNorm,
channelwise_lin2: candle_nn::Linear,
}
impl ResBlockStageB {
pub fn new(c: usize, c_skip: usize, ksize: usize, vb: VarBuilder) -> Result<Self> {
let cfg = candle_nn::Conv2dConfig {
groups: c,
padding: ksize / 2,
..Default::default()
};
let depthwise = candle_nn::conv2d(c, c, ksize, cfg, vb.pp("depthwise"))?;
let norm = WLayerNorm::new(c, vb.pp("norm"))?;
let channelwise_lin1 = candle_nn::linear(c + c_skip, c * 4, vb.pp("channelwise.0"))?;
let channelwise_grn = GlobalResponseNorm::new(4 * c, vb.pp("channelwise.2"))?;
let channelwise_lin2 = candle_nn::linear(c * 4, c, vb.pp("channelwise.4"))?;
Ok(Self {
depthwise,
norm,
channelwise_lin1,
channelwise_grn,
channelwise_lin2,
})
}
pub fn forward(&self, xs: &Tensor, x_skip: Option<&Tensor>) -> Result<Tensor> {
let x_res = xs;
let xs = xs.apply(&self.depthwise)?.apply(&self.norm)?;
let xs = match x_skip {
None => xs.clone(),
Some(x_skip) => Tensor::cat(&[&xs, x_skip], 1)?,
};
let xs = xs
.permute((0, 2, 3, 1))?
.apply(&self.channelwise_lin1)?
.gelu()?
.apply(&self.channelwise_grn)?
.apply(&self.channelwise_lin2)?
.permute((0, 3, 1, 2))?;
xs + x_res
}
}
#[derive(Debug)]
pub struct WDiffNeXt {
clip_mapper: candle_nn::Linear,
effnet_mappers: Vec<candle_nn::Conv2d>,
seq_norm: candle_nn::LayerNorm,
embedding_conv: candle_nn::Conv2d,
embedding_ln: WLayerNorm,
}
impl WDiffNeXt {
pub fn new(
c_in: usize,
c_out: usize,
vb: VarBuilder,
c_cond: usize,
clip_embd: usize,
patch_size: usize,
) -> Result<Self> {
const C_HIDDEN: [usize; 4] = [320, 640, 1280, 1280];
let clip_mapper = candle_nn::linear(clip_embd, c_cond, vb.pp("clip_mapper"))?;
let effnet_mappers = vec![];
let cfg = candle_nn::layer_norm::LayerNormConfig {
..Default::default()
};
let seq_norm = candle_nn::layer_norm(c_cond, cfg, vb.pp("seq_norm"))?;
let embedding_ln = WLayerNorm::new(C_HIDDEN[0], vb.pp("embedding.1"))?;
let embedding_conv = candle_nn::conv2d(
c_in * patch_size * patch_size,
C_HIDDEN[1],
1,
Default::default(),
vb.pp("embedding.2"),
)?;
Ok(Self {
clip_mapper,
effnet_mappers,
seq_norm,
embedding_conv,
embedding_ln,
})
}
}