mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 10:26:33 +00:00
360 lines
12 KiB
Rust
360 lines
12 KiB
Rust
use candle::{DType, Device, IndexOp, Result, Tensor, D};
|
|
use candle_nn::{Embedding, LayerNorm, Linear, VarBuilder};
|
|
|
|
fn linear(size1: usize, size2: usize, bias: bool, vb: VarBuilder) -> Result<Linear> {
|
|
let weight = vb.get((size2, size1), "weight")?;
|
|
let bias = if bias {
|
|
Some(vb.get(size2, "bias")?)
|
|
} else {
|
|
None
|
|
};
|
|
Ok(Linear::new(weight, bias))
|
|
}
|
|
|
|
fn embedding(vocab_size: usize, hidden_size: usize, vb: VarBuilder) -> Result<Embedding> {
|
|
let embeddings = vb.get((vocab_size, hidden_size), "weight")?;
|
|
Ok(Embedding::new(embeddings, hidden_size))
|
|
}
|
|
|
|
fn layer_norm(size: usize, eps: f64, vb: VarBuilder) -> Result<LayerNorm> {
|
|
let weight = vb.get(size, "weight")?;
|
|
let bias = vb.get(size, "bias")?;
|
|
Ok(LayerNorm::new(weight, bias, eps))
|
|
}
|
|
|
|
fn make_causal_mask(t: usize, device: &Device) -> Result<Tensor> {
|
|
let mask: Vec<_> = (0..t)
|
|
.flat_map(|i| (0..t).map(move |j| u32::from(j <= i)))
|
|
.collect();
|
|
let mask = Tensor::from_slice(&mask, (t, t), device)?;
|
|
Ok(mask)
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub struct Config {
|
|
pub vocab_size: usize,
|
|
// max_position_embeddings aka n_positions
|
|
pub max_position_embeddings: usize,
|
|
// num_hidden_layers aka n_layer
|
|
pub num_hidden_layers: usize,
|
|
// hidden_size aka n_embd
|
|
pub hidden_size: usize,
|
|
pub layer_norm_epsilon: f64,
|
|
pub n_inner: Option<usize>,
|
|
// num_attention_heads aka n_head
|
|
pub num_attention_heads: usize,
|
|
pub multi_query: bool,
|
|
pub use_cache: bool,
|
|
}
|
|
|
|
impl Config {
|
|
#[allow(dead_code)]
|
|
pub fn starcoder_1b() -> Self {
|
|
Self {
|
|
vocab_size: 49152,
|
|
max_position_embeddings: 8192,
|
|
num_hidden_layers: 24,
|
|
hidden_size: 2048,
|
|
layer_norm_epsilon: 1e-5,
|
|
n_inner: Some(8192),
|
|
num_attention_heads: 16,
|
|
multi_query: true,
|
|
use_cache: true,
|
|
}
|
|
}
|
|
|
|
#[allow(dead_code)]
|
|
pub fn starcoder_3b() -> Self {
|
|
Self {
|
|
vocab_size: 49152,
|
|
max_position_embeddings: 8192,
|
|
num_hidden_layers: 36,
|
|
hidden_size: 2816,
|
|
layer_norm_epsilon: 1e-5,
|
|
n_inner: Some(11264),
|
|
num_attention_heads: 22,
|
|
multi_query: true,
|
|
use_cache: true,
|
|
}
|
|
}
|
|
|
|
#[allow(dead_code)]
|
|
pub fn starcoder_7b() -> Self {
|
|
Self {
|
|
vocab_size: 49152,
|
|
max_position_embeddings: 8192,
|
|
num_hidden_layers: 42,
|
|
hidden_size: 4096,
|
|
layer_norm_epsilon: 1e-5,
|
|
n_inner: Some(16384),
|
|
num_attention_heads: 32,
|
|
multi_query: true,
|
|
use_cache: true,
|
|
}
|
|
}
|
|
|
|
#[allow(dead_code)]
|
|
pub fn starcoder() -> Self {
|
|
Self {
|
|
vocab_size: 49152,
|
|
max_position_embeddings: 8192,
|
|
num_hidden_layers: 40,
|
|
hidden_size: 6144,
|
|
layer_norm_epsilon: 1e-5,
|
|
n_inner: Some(24576),
|
|
num_attention_heads: 48,
|
|
multi_query: true,
|
|
use_cache: true,
|
|
}
|
|
}
|
|
}
|
|
|
|
struct Attention {
|
|
c_attn: Linear,
|
|
c_proj: Linear,
|
|
kv_cache: Option<Tensor>,
|
|
use_cache: bool,
|
|
embed_dim: usize,
|
|
kv_dim: usize,
|
|
num_heads: usize,
|
|
head_dim: usize,
|
|
multi_query: bool,
|
|
}
|
|
|
|
impl Attention {
|
|
pub fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
|
|
let hidden_size = cfg.hidden_size;
|
|
let head_dim = hidden_size / cfg.num_attention_heads;
|
|
let kv_heads = if cfg.multi_query {
|
|
1
|
|
} else {
|
|
cfg.num_attention_heads
|
|
};
|
|
let kv_dim = kv_heads * head_dim;
|
|
let c_attn = linear(hidden_size, hidden_size + 2 * kv_dim, true, vb.pp("c_attn"))?;
|
|
let c_proj = linear(hidden_size, hidden_size, true, vb.pp("c_proj"))?;
|
|
Ok(Self {
|
|
c_proj,
|
|
c_attn,
|
|
embed_dim: hidden_size,
|
|
kv_cache: None,
|
|
use_cache: cfg.use_cache,
|
|
kv_dim,
|
|
head_dim,
|
|
num_heads: cfg.num_attention_heads,
|
|
multi_query: cfg.multi_query,
|
|
})
|
|
}
|
|
|
|
fn attn(
|
|
&self,
|
|
query: &Tensor,
|
|
key: &Tensor,
|
|
value: &Tensor,
|
|
attention_mask: &Tensor,
|
|
) -> Result<Tensor> {
|
|
if query.dtype() != DType::F32 {
|
|
// If we start supporting f16 models, we may need the upcasting scaling bits.
|
|
// https://github.com/huggingface/transformers/blob/a0042379269bea9182c1f87e6b2eee4ba4c8cce8/src/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py#L133
|
|
candle::bail!("upcasting is not supported {:?}", query.dtype())
|
|
}
|
|
let scale_factor = 1f64 / (self.head_dim as f64).sqrt();
|
|
let initial_query_shape = query.shape();
|
|
let key_len = key.dim(D::Minus1)?;
|
|
let (query, key, attn_shape, attn_view) = if self.multi_query {
|
|
let (b_sz, query_len, _) = query.dims3()?;
|
|
let query = query.reshape((b_sz, query_len * self.num_heads, self.head_dim))?;
|
|
let attn_shape = (b_sz, query_len, self.num_heads, key_len);
|
|
let attn_view = (b_sz, query_len * self.num_heads, key_len);
|
|
(query, key.clone(), attn_shape, attn_view)
|
|
} else {
|
|
let (b_sz, _num_heads, query_len, _head_dim) = query.dims4()?;
|
|
let query = query.reshape((b_sz, query_len * self.num_heads, self.head_dim))?;
|
|
let key = key.reshape((b_sz * self.num_heads, self.head_dim, key_len))?;
|
|
let attn_shape = (b_sz, self.num_heads, query_len, key_len);
|
|
let attn_view = (b_sz * self.num_heads, query_len, key_len);
|
|
(query, key, attn_shape, attn_view)
|
|
};
|
|
|
|
let attn_weights =
|
|
(query.matmul(&key.contiguous()?)? * scale_factor)?.reshape(attn_shape)?;
|
|
let attention_mask = attention_mask.broadcast_as(attn_shape)?;
|
|
let mask_value =
|
|
Tensor::new(f32::NEG_INFINITY, query.device())?.broadcast_as(attn_shape)?;
|
|
let attn_weights = attention_mask.where_cond(&attn_weights, &mask_value)?;
|
|
let attn_weights = candle_nn::ops::softmax(&attn_weights, D::Minus1)?;
|
|
let value = value.contiguous()?;
|
|
let attn_output = if self.multi_query {
|
|
attn_weights
|
|
.reshape(attn_view)?
|
|
.matmul(&value)?
|
|
.reshape(initial_query_shape)?
|
|
} else {
|
|
attn_weights.matmul(&value)?
|
|
};
|
|
Ok(attn_output)
|
|
}
|
|
|
|
fn forward(&mut self, hidden_states: &Tensor, attention_mask: &Tensor) -> Result<Tensor> {
|
|
let qkv = self.c_attn.forward(hidden_states)?;
|
|
let (query, key_value) = if self.multi_query {
|
|
let query = qkv.i((.., .., ..self.embed_dim))?;
|
|
let key_value = qkv.i((.., .., self.embed_dim..self.embed_dim + 2 * self.kv_dim))?;
|
|
(query, key_value)
|
|
} else {
|
|
let mut dims = qkv.dims().to_vec();
|
|
dims.pop();
|
|
dims.push(self.embed_dim);
|
|
dims.push(self.head_dim * 3);
|
|
let qkv = qkv.reshape(dims)?.transpose(1, 2)?;
|
|
let query = qkv.i((.., .., .., ..self.head_dim))?;
|
|
let key_value = qkv.i((.., .., .., self.head_dim..3 * self.head_dim))?;
|
|
(query, key_value)
|
|
};
|
|
let mut key_value = key_value;
|
|
if self.use_cache {
|
|
if let Some(kv_cache) = &self.kv_cache {
|
|
// TODO: we could trim the tensors to MAX_SEQ_LEN so that this would work for
|
|
// arbitrarily large sizes.
|
|
key_value = Tensor::cat(&[kv_cache, &key_value], D::Minus2)?.contiguous()?;
|
|
}
|
|
self.kv_cache = Some(key_value.clone())
|
|
}
|
|
|
|
let key = key_value.narrow(D::Minus1, 0, self.head_dim)?;
|
|
let value = key_value.narrow(D::Minus1, self.head_dim, self.head_dim)?;
|
|
let attn_output = self.attn(&query, &key.t()?, &value, attention_mask)?;
|
|
let attn_output = if self.multi_query {
|
|
attn_output
|
|
} else {
|
|
attn_output
|
|
.transpose(1, 2)?
|
|
.reshape(hidden_states.shape())?
|
|
};
|
|
let attn_output = self.c_proj.forward(&attn_output)?;
|
|
Ok(attn_output)
|
|
}
|
|
}
|
|
|
|
struct Mlp {
|
|
c_fc: Linear,
|
|
c_proj: Linear,
|
|
}
|
|
|
|
impl Mlp {
|
|
fn load(inner_dim: usize, vb: VarBuilder, cfg: &Config) -> Result<Self> {
|
|
let c_fc = linear(cfg.hidden_size, inner_dim, true, vb.pp("c_fc"))?;
|
|
let c_proj = linear(inner_dim, cfg.hidden_size, true, vb.pp("c_proj"))?;
|
|
Ok(Self { c_fc, c_proj })
|
|
}
|
|
|
|
fn forward(&mut self, hidden_states: &Tensor) -> Result<Tensor> {
|
|
let hidden_states = self.c_fc.forward(hidden_states)?.gelu()?;
|
|
let hidden_states = self.c_proj.forward(&hidden_states)?;
|
|
Ok(hidden_states)
|
|
}
|
|
}
|
|
|
|
// TODO: Add cross-attention?
|
|
struct Block {
|
|
ln_1: LayerNorm,
|
|
attn: Attention,
|
|
ln_2: LayerNorm,
|
|
mlp: Mlp,
|
|
}
|
|
|
|
impl Block {
|
|
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
|
|
let hidden_size = cfg.hidden_size;
|
|
let inner_dim = cfg.n_inner.unwrap_or(4 * hidden_size);
|
|
let ln_1 = layer_norm(hidden_size, cfg.layer_norm_epsilon, vb.pp("ln_1"))?;
|
|
let attn = Attention::load(vb.pp("attn"), cfg)?;
|
|
let ln_2 = layer_norm(hidden_size, cfg.layer_norm_epsilon, vb.pp("ln_2"))?;
|
|
let mlp = Mlp::load(inner_dim, vb.pp("mlp"), cfg)?;
|
|
Ok(Self {
|
|
ln_1,
|
|
attn,
|
|
ln_2,
|
|
mlp,
|
|
})
|
|
}
|
|
|
|
fn forward(&mut self, hidden_states: &Tensor, attention_mask: &Tensor) -> Result<Tensor> {
|
|
let residual = hidden_states;
|
|
let hidden_states = self.ln_1.forward(hidden_states)?;
|
|
let attn_outputs = self.attn.forward(&hidden_states, attention_mask)?;
|
|
let hidden_states = (&attn_outputs + residual)?;
|
|
let residual = &hidden_states;
|
|
let hidden_states = self.ln_2.forward(&hidden_states)?;
|
|
let hidden_states = self.mlp.forward(&hidden_states)?;
|
|
let hidden_states = (&hidden_states + residual)?;
|
|
Ok(hidden_states)
|
|
}
|
|
}
|
|
|
|
pub struct GPTBigCode {
|
|
wte: Embedding,
|
|
wpe: Embedding,
|
|
blocks: Vec<Block>,
|
|
ln_f: LayerNorm,
|
|
lm_head: Linear,
|
|
bias: Tensor,
|
|
config: Config,
|
|
}
|
|
|
|
impl GPTBigCode {
|
|
pub fn config(&self) -> &Config {
|
|
&self.config
|
|
}
|
|
|
|
pub fn load(vb: VarBuilder, cfg: Config) -> Result<Self> {
|
|
let hidden_size = cfg.hidden_size;
|
|
let vb_t = vb.pp("transformer");
|
|
let wte = embedding(cfg.vocab_size, hidden_size, vb_t.pp("wte"))?;
|
|
let wpe = embedding(cfg.max_position_embeddings, hidden_size, vb_t.pp("wpe"))?;
|
|
let blocks = (0..cfg.num_hidden_layers)
|
|
.map(|i| Block::load(vb_t.pp(&format!("h.{i}")), &cfg))
|
|
.collect::<Result<Vec<_>>>()?;
|
|
let ln_f = layer_norm(hidden_size, cfg.layer_norm_epsilon, vb_t.pp("ln_f"))?;
|
|
let lm_head = linear(hidden_size, cfg.vocab_size, false, vb_t.pp("wte"))?;
|
|
let bias = make_causal_mask(cfg.max_position_embeddings, vb.device())?;
|
|
Ok(Self {
|
|
wte,
|
|
wpe,
|
|
blocks,
|
|
lm_head,
|
|
ln_f,
|
|
bias,
|
|
config: cfg,
|
|
})
|
|
}
|
|
|
|
pub fn forward(&mut self, input_ids: &Tensor, past_len: usize) -> Result<Tensor> {
|
|
let dev = input_ids.device();
|
|
let (b_sz, seq_len) = input_ids.dims2()?;
|
|
|
|
let key_len = past_len + seq_len;
|
|
let attention_mask = self.bias.i((past_len..key_len, ..key_len))?.unsqueeze(0)?;
|
|
// MQA models: (batch_size, query_length, n_heads, key_length)
|
|
// MHA models: (batch_size, n_heads, query_length, key_length)
|
|
let seq_len_dim = if self.config.multi_query { 2 } else { 1 };
|
|
let attention_mask = attention_mask.unsqueeze(seq_len_dim)?;
|
|
|
|
let position_ids = Tensor::arange(past_len as u32, (past_len + seq_len) as u32, dev)?;
|
|
let position_ids = position_ids.unsqueeze(0)?.broadcast_as((b_sz, seq_len))?;
|
|
let input_embeds = self.wte.forward(input_ids)?;
|
|
let position_embeds = self.wpe.forward(&position_ids)?;
|
|
|
|
let mut hidden_states = (&input_embeds + &position_embeds)?;
|
|
for block in self.blocks.iter_mut() {
|
|
hidden_states = block.forward(&hidden_states, &attention_mask)?;
|
|
}
|
|
let hidden_states = self.ln_f.forward(&hidden_states)?;
|
|
let hidden_states = hidden_states
|
|
.reshape((b_sz, seq_len, self.config.hidden_size))?
|
|
.narrow(1, seq_len - 1, 1)?;
|
|
let logits = self.lm_head.forward(&hidden_states)?.squeeze(1)?;
|
|
Ok(logits)
|
|
}
|
|
}
|