Files
candle/candle-examples/examples/quantized/model.rs
Laurent Mazare a1a5ab8b0a Neon optimized vecdot (#666)
* Q5k vecdot.

* Add the q3k vecdot.

* Q2k vecdot.

* Move the quantized model to its own file.
2023-08-29 22:28:46 +01:00

368 lines
15 KiB
Rust

use std::collections::HashMap;
use candle::quantized::QTensor;
use candle::quantized::{ggml_file, gguf_file};
use candle::{DType, Device, IndexOp, Result, Tensor, D};
use candle_nn::{Embedding, Module};
const MAX_SEQ_LEN: usize = 4096;
struct RmsNorm {
inner: candle_nn::LayerNorm,
span: tracing::Span,
}
impl RmsNorm {
fn new(scale: QTensor, eps: f32) -> Result<Self> {
let span = tracing::span!(tracing::Level::TRACE, "rms-norm");
let scale = scale.dequantize(&Device::Cpu)?;
let inner = candle_nn::LayerNorm::rms_norm(scale, eps as f64);
Ok(Self { inner, span })
}
fn forward(&self, x: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
self.inner.forward(x)
}
}
// QMatMul wrapper adding some tracing.
struct QMatMul {
inner: candle::quantized::QMatMul,
span: tracing::Span,
}
impl QMatMul {
fn from_qtensor(qtensor: QTensor) -> Self {
let inner = candle::quantized::QMatMul::from_qtensor(qtensor);
let span = tracing::span!(tracing::Level::TRACE, "qmatmul");
Self { inner, span }
}
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
self.inner.forward(xs)
}
}
struct LayerWeights {
attention_wq: QMatMul,
attention_wk: QMatMul,
attention_wv: QMatMul,
attention_wo: QMatMul,
attention_norm: RmsNorm,
feed_forward_w1: QMatMul,
feed_forward_w2: QMatMul,
feed_forward_w3: QMatMul,
ffn_norm: RmsNorm,
n_head: usize,
n_kv_head: usize,
head_dim: usize,
cos: Tensor,
sin: Tensor,
kv_cache: Option<(Tensor, Tensor)>,
span_attn: tracing::Span,
span_rot: tracing::Span,
span_mlp: tracing::Span,
}
fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
let shape = mask.shape();
let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
let m = mask.where_cond(&on_true, on_false)?;
Ok(m)
}
impl LayerWeights {
fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
let _enter = self.span_rot.enter();
let (b_sz, n_head, seq_len, n_embd) = x.dims4()?;
let cos = self
.cos
.narrow(0, index_pos, seq_len)?
.reshape((seq_len, n_embd / 2, 1))?;
let sin = self
.sin
.narrow(0, index_pos, seq_len)?
.reshape((seq_len, n_embd / 2, 1))?;
let cos = cos.broadcast_as((b_sz, 1, seq_len, n_embd / 2, 1))?;
let sin = sin.broadcast_as((b_sz, 1, seq_len, n_embd / 2, 1))?;
// This mimics the llama.cpp behavior.
// https://github.com/ggerganov/llama.cpp/blob/1f0bccb27929e261744c979bc75114955da49e98/ggml.c#L12104-L12105
// The x0 and x1 value are interleaved on the n_embd (= head_dim) dimension.
// The resulting y0 and y1 are also interleaved with:
// y0 = x0*cos - x1*sin
// y1 = x0*sin + x1*cos
let x = x.reshape((b_sz, n_head, seq_len, n_embd / 2, 2))?;
let x0 = x.narrow(D::Minus1, 0, 1)?;
let x1 = x.narrow(D::Minus1, 1, 1)?;
let y0 = (x0.broadcast_mul(&cos)? - x1.broadcast_mul(&sin)?)?;
let y1 = (x0.broadcast_mul(&sin)? + x1.broadcast_mul(&cos)?)?;
let rope = Tensor::cat(&[y0, y1], D::Minus1)?;
let rope = rope.flatten_from(D::Minus2)?;
Ok(rope)
}
fn forward_attn(&mut self, x: &Tensor, mask: &Tensor, index_pos: usize) -> Result<Tensor> {
let _enter = self.span_attn.enter();
let (b_sz, seq_len, n_embd) = x.dims3()?;
let q = self.attention_wq.forward(x)?;
let k = self.attention_wk.forward(x)?;
let v = self.attention_wv.forward(x)?;
let q = q
.reshape((b_sz, seq_len, self.n_head, self.head_dim))?
.transpose(1, 2)?;
let k = k
.reshape((b_sz, seq_len, self.n_kv_head, self.head_dim))?
.transpose(1, 2)?;
let v = v
.reshape((b_sz, seq_len, self.n_kv_head, self.head_dim))?
.transpose(1, 2)?;
let q = self.apply_rotary_emb(&q, index_pos)?;
let k = self.apply_rotary_emb(&k, index_pos)?;
let (k, v) = match &self.kv_cache {
None => (k, v),
Some((k_cache, v_cache)) => {
let k = Tensor::cat(&[k_cache, &k], 2)?.contiguous()?;
let v = Tensor::cat(&[v_cache, &v], 2)?.contiguous()?;
(k, v)
}
};
self.kv_cache = Some((k.clone(), v.clone()));
// Support for MQA, useful for 70B models.
let k = self.repeat_kv(k)?;
let v = self.repeat_kv(v)?;
let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
let mask = mask.broadcast_as(att.shape())?;
let att = masked_fill(&att, &mask, f32::NEG_INFINITY)?;
let att = candle_nn::ops::softmax(&att, D::Minus1)?;
// Convert to contiguous as matmul doesn't support strided vs for now.
let y = att.matmul(&v.contiguous()?)?;
let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?;
let y = self.attention_wo.forward(&y)?;
Ok(y)
}
fn repeat_kv(&self, x: Tensor) -> Result<Tensor> {
let n_rep = self.n_head / self.n_kv_head;
if n_rep == 1 {
Ok(x)
} else {
let (b_sz, n_kv_head, seq_len, head_dim) = x.dims4()?;
let x = x
.unsqueeze(2)?
.expand((b_sz, n_kv_head, n_rep, seq_len, head_dim))?
.reshape((b_sz, n_kv_head * n_rep, seq_len, head_dim))?;
Ok(x)
}
}
}
pub struct ModelWeights {
tok_embeddings: Embedding,
layers: Vec<LayerWeights>,
norm: RmsNorm,
output: QMatMul,
masks: HashMap<usize, Tensor>,
span: tracing::Span,
span_output: tracing::Span,
}
fn precomput_freqs_cis(head_dim: usize, freq_base: f32) -> Result<(Tensor, Tensor)> {
let theta: Vec<_> = (0..head_dim)
.step_by(2)
.map(|i| 1f32 / freq_base.powf(i as f32 / head_dim as f32))
.collect();
let theta = Tensor::new(theta.as_slice(), &Device::Cpu)?;
let idx_theta = Tensor::arange(0, MAX_SEQ_LEN as u32, &Device::Cpu)?
.to_dtype(DType::F32)?
.reshape((MAX_SEQ_LEN, 1))?
.matmul(&theta.reshape((1, theta.elem_count()))?)?;
let cos = idx_theta.cos()?;
let sin = idx_theta.sin()?;
Ok((cos, sin))
}
impl ModelWeights {
pub fn from_ggml(mut ct: ggml_file::Content, gqa: usize) -> Result<Self> {
let cpu = &Device::Cpu;
let head_dim = (ct.hparams.n_embd / ct.hparams.n_head) as usize;
let (cos, sin) = precomput_freqs_cis(head_dim, 10000.)?;
let tok_embeddings = ct.remove("tok_embeddings.weight")?;
let tok_embeddings = tok_embeddings.dequantize(cpu)?;
let norm = RmsNorm::new(ct.remove("norm.weight")?, 1e-5)?;
let output = ct.remove("output.weight")?;
let mut layers = Vec::with_capacity(ct.hparams.n_layer as usize);
for layer_idx in 0..ct.hparams.n_layer {
let prefix = format!("layers.{layer_idx}");
let attention_wq = ct.remove(&format!("{prefix}.attention.wq.weight"))?;
let attention_wk = ct.remove(&format!("{prefix}.attention.wk.weight"))?;
let attention_wv = ct.remove(&format!("{prefix}.attention.wv.weight"))?;
let attention_wo = ct.remove(&format!("{prefix}.attention.wo.weight"))?;
let feed_forward_w1 = ct.remove(&format!("{prefix}.feed_forward.w1.weight"))?;
let feed_forward_w2 = ct.remove(&format!("{prefix}.feed_forward.w2.weight"))?;
let feed_forward_w3 = ct.remove(&format!("{prefix}.feed_forward.w3.weight"))?;
let attention_norm = ct.remove(&format!("{prefix}.attention_norm.weight"))?;
let ffn_norm = ct.remove(&format!("{prefix}.ffn_norm.weight"))?;
let span_attn = tracing::span!(tracing::Level::TRACE, "attn");
let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot");
let span_mlp = tracing::span!(tracing::Level::TRACE, "attn-mlp");
layers.push(LayerWeights {
attention_wq: QMatMul::from_qtensor(attention_wq),
attention_wk: QMatMul::from_qtensor(attention_wk),
attention_wv: QMatMul::from_qtensor(attention_wv),
attention_wo: QMatMul::from_qtensor(attention_wo),
attention_norm: RmsNorm::new(attention_norm, 1e-5)?,
feed_forward_w1: QMatMul::from_qtensor(feed_forward_w1),
feed_forward_w2: QMatMul::from_qtensor(feed_forward_w2),
feed_forward_w3: QMatMul::from_qtensor(feed_forward_w3),
ffn_norm: RmsNorm::new(ffn_norm, 1e-5)?,
n_head: ct.hparams.n_head as usize,
n_kv_head: ct.hparams.n_head as usize / gqa,
head_dim: (ct.hparams.n_embd / ct.hparams.n_head) as usize,
cos: cos.clone(),
sin: sin.clone(),
kv_cache: None,
span_attn,
span_rot,
span_mlp,
})
}
let span = tracing::span!(tracing::Level::TRACE, "model");
let span_output = tracing::span!(tracing::Level::TRACE, "output");
Ok(Self {
tok_embeddings: Embedding::new(tok_embeddings, ct.hparams.n_embd as usize),
layers,
norm,
output: QMatMul::from_qtensor(output),
masks: HashMap::new(),
span,
span_output,
})
}
pub fn from_gguf<R: std::io::Seek + std::io::Read>(
ct: gguf_file::Content,
reader: &mut R,
) -> Result<Self> {
let cpu = &Device::Cpu;
let md_get = |s: &str| match ct.metadata.get(s) {
None => candle::bail!("cannot find {s} in metadata"),
Some(v) => Ok(v),
};
// Parameter extraction from metadata.
let head_count = md_get("llama.attention.head_count")?.to_u32()? as usize;
let head_count_kv = md_get("llama.attention.head_count_kv")?.to_u32()? as usize;
let block_count = md_get("llama.block_count")?.to_u32()? as usize;
let embedding_length = md_get("llama.embedding_length")?.to_u32()? as usize;
let rope_dim = md_get("llama.rope.dimension_count")?.to_u32()? as usize;
// Strangely this value is generally 1e-6 in GGUF file but used to be 1e-5 by default.
let rms_norm_eps = md_get("llama.attention.layer_norm_rms_epsilon")?.to_f32()?;
let rope_freq_base = md_get("llama.rope.freq_base")
.and_then(|m| m.to_f32())
.unwrap_or(10000f32);
let (cos, sin) = precomput_freqs_cis(rope_dim, rope_freq_base)?;
let tok_embeddings = ct.tensor(reader, "token_embd.weight")?;
let tok_embeddings = tok_embeddings.dequantize(cpu)?;
let norm = RmsNorm::new(ct.tensor(reader, "output_norm.weight")?, rms_norm_eps)?;
let output = ct.tensor(reader, "output.weight")?;
let mut layers = Vec::with_capacity(block_count);
for layer_idx in 0..block_count {
let prefix = format!("blk.{layer_idx}");
let attention_wq = ct.tensor(reader, &format!("{prefix}.attn_q.weight"))?;
let attention_wk = ct.tensor(reader, &format!("{prefix}.attn_k.weight"))?;
let attention_wv = ct.tensor(reader, &format!("{prefix}.attn_v.weight"))?;
let attention_wo = ct.tensor(reader, &format!("{prefix}.attn_output.weight"))?;
let feed_forward_w1 = ct.tensor(reader, &format!("{prefix}.ffn_gate.weight"))?;
let feed_forward_w2 = ct.tensor(reader, &format!("{prefix}.ffn_down.weight"))?;
let feed_forward_w3 = ct.tensor(reader, &format!("{prefix}.ffn_up.weight"))?;
let attention_norm = ct.tensor(reader, &format!("{prefix}.attn_norm.weight"))?;
let ffn_norm = ct.tensor(reader, &format!("{prefix}.ffn_norm.weight"))?;
let span_attn = tracing::span!(tracing::Level::TRACE, "attn");
let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot");
let span_mlp = tracing::span!(tracing::Level::TRACE, "attn-mlp");
layers.push(LayerWeights {
attention_wq: QMatMul::from_qtensor(attention_wq),
attention_wk: QMatMul::from_qtensor(attention_wk),
attention_wv: QMatMul::from_qtensor(attention_wv),
attention_wo: QMatMul::from_qtensor(attention_wo),
attention_norm: RmsNorm::new(attention_norm, rms_norm_eps)?,
feed_forward_w1: QMatMul::from_qtensor(feed_forward_w1),
feed_forward_w2: QMatMul::from_qtensor(feed_forward_w2),
feed_forward_w3: QMatMul::from_qtensor(feed_forward_w3),
ffn_norm: RmsNorm::new(ffn_norm, rms_norm_eps)?,
n_head: head_count,
n_kv_head: head_count_kv,
head_dim: embedding_length / head_count,
cos: cos.clone(),
sin: sin.clone(),
kv_cache: None,
span_attn,
span_rot,
span_mlp,
})
}
let span = tracing::span!(tracing::Level::TRACE, "model");
let span_output = tracing::span!(tracing::Level::TRACE, "output");
Ok(Self {
tok_embeddings: Embedding::new(tok_embeddings, embedding_length),
layers,
norm,
output: QMatMul::from_qtensor(output),
masks: HashMap::new(),
span,
span_output,
})
}
fn mask(&mut self, t: usize) -> Result<Tensor> {
if let Some(mask) = self.masks.get(&t) {
Ok(mask.clone())
} else {
let mask: Vec<_> = (0..t)
.flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
.collect();
let mask = Tensor::from_slice(&mask, (t, t), &Device::Cpu)?;
self.masks.insert(t, mask.clone());
Ok(mask)
}
}
pub fn forward(&mut self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
let (_b_sz, seq_len) = x.dims2()?;
let mask = self.mask(seq_len)?;
let _enter = self.span.enter();
let mut layer_in = self.tok_embeddings.forward(x)?;
for layer in self.layers.iter_mut() {
let x = layer_in;
let residual = &x;
let x = layer.attention_norm.forward(&x)?;
let attn = layer.forward_attn(&x, &mask, index_pos)?;
let x = (attn + residual)?;
// MLP
let _enter = layer.span_mlp.enter();
let residual = &x;
let x = layer.ffn_norm.forward(&x)?;
let w1 = layer.feed_forward_w1.forward(&x)?;
let w3 = layer.feed_forward_w3.forward(&x)?;
let mlp = layer
.feed_forward_w2
.forward(&(candle_nn::ops::silu(&w1)? * w3)?)?;
layer_in = (mlp + residual)?;
}
let x = self.norm.forward(&layer_in)?;
let x = x.i((.., seq_len - 1, ..))?;
let _enter = self.span_output.enter();
self.output.forward(&x)
}
}