Files
candle/candle-examples/examples/pixtral/main.rs
Laurent Mazare dfe9a00683 Pixtral polishing. (#2522)
* Pixtral polishing.

* Clippy fix.
2024-09-30 21:23:54 +02:00

328 lines
11 KiB
Rust

#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::{Error as E, Result};
use clap::Parser;
use candle_transformers::models::pixtral::{vision_model, Config, Model};
use candle::{DType, Device, Module, Tensor};
use candle_examples::token_output_stream::TokenOutputStream;
use candle_nn::VarBuilder;
use candle_transformers::generation::LogitsProcessor;
use hf_hub::{api::sync::Api, Repo, RepoType};
use tokenizers::Tokenizer;
struct TextGeneration {
model: Model,
image: Tensor,
device: Device,
tokenizer: TokenOutputStream,
logits_processor: LogitsProcessor,
repeat_penalty: f32,
repeat_last_n: usize,
}
impl TextGeneration {
#[allow(clippy::too_many_arguments)]
fn new(
model: Model,
image: Tensor,
tokenizer: Tokenizer,
seed: u64,
temp: Option<f64>,
top_p: Option<f64>,
repeat_penalty: f32,
repeat_last_n: usize,
device: &Device,
) -> Self {
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
Self {
model,
image,
tokenizer: TokenOutputStream::new(tokenizer),
logits_processor,
repeat_penalty,
repeat_last_n,
device: device.clone(),
}
}
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
use std::io::Write;
self.tokenizer.clear();
let mut tokens = self
.tokenizer
.tokenizer()
.encode(prompt, true)
.map_err(E::msg)?
.get_ids()
.to_vec();
let mut generated_tokens = 0usize;
let get_token = |v| match self.tokenizer.get_token(v) {
Some(token) => Ok(token),
None => anyhow::bail!("cannot find the {v} token"),
};
let bos_token = get_token("<s>")?;
let eos_token = get_token("</s>")?;
let inst_token = get_token("[INST]")?;
let end_inst_token = get_token("[/INST]")?;
let img_break = get_token("[IMG_BREAK]")?;
let img_end = get_token("[IMG_END]")?;
let start_gen = std::time::Instant::now();
for index in 0..sample_len {
let logits = if index > 0 {
let context_size = if index > 0 { 1 } else { tokens.len() };
let start_pos = tokens.len().saturating_sub(context_size);
let ctxt = &tokens[start_pos..];
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
self.model.lm_forward(&input)?
} else {
let (_b, _c, h, w) = self.image.dims4()?;
let h = h / self.model.patch_size;
let w = w / self.model.patch_size;
let image_embeds = self.model.encode_image(&self.image)?;
println!("generated image embeddings {image_embeds:?}");
let image_embeds = image_embeds.to_dtype(self.model.dtype)?;
for &t in tokens.iter() {
if let Some(t) = self.tokenizer.next_token(t)? {
print!("{t}")
}
}
std::io::stdout().flush()?;
let break_embeds = {
let input = Tensor::new(&[img_break], &self.device)?.unsqueeze(0)?;
self.model.language_model.embed_tokens().forward(&input)?
};
let start_embeds = {
let mut in_tokens = vec![bos_token, inst_token];
in_tokens.extend_from_slice(tokens.as_slice());
let input = Tensor::new(in_tokens.as_slice(), &self.device)?.unsqueeze(0)?;
self.model.language_model.embed_tokens().forward(&input)?
};
let end_embeds = {
let input =
Tensor::new(&[img_end, end_inst_token], &self.device)?.unsqueeze(0)?;
self.model.language_model.embed_tokens().forward(&input)?
};
let mut input_embeds = vec![start_embeds];
for h_idx in 0..h {
if h_idx > 0 {
input_embeds.push(break_embeds.clone())
}
let row = image_embeds.narrow(1, h_idx * w, w)?;
input_embeds.push(row);
}
input_embeds.push(end_embeds);
let input_embeds = Tensor::cat(&input_embeds, 1)?;
self.model.lm_forward_embeds(&input_embeds)?
};
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
let logits = if self.repeat_penalty == 1. {
logits
} else {
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
candle_transformers::utils::apply_repeat_penalty(
&logits,
self.repeat_penalty,
&tokens[start_at..],
)?
};
let next_token = self.logits_processor.sample(&logits)?;
tokens.push(next_token);
generated_tokens += 1;
if next_token == eos_token {
break;
}
if let Some(t) = self.tokenizer.next_token(next_token)? {
print!("{t}");
std::io::stdout().flush()?;
}
}
let dt = start_gen.elapsed();
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
print!("{rest}");
}
std::io::stdout().flush()?;
println!(
"\n{generated_tokens} tokens generated ({:.2} token/s)",
generated_tokens as f64 / dt.as_secs_f64(),
);
Ok(())
}
}
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,
#[arg(long, default_value = "Describe the image.\n")]
prompt: String,
/// The temperature used to generate samples.
#[arg(long)]
temperature: Option<f64>,
/// Nucleus sampling probability cutoff.
#[arg(long)]
top_p: Option<f64>,
/// The seed to use when generating random samples.
#[arg(long, default_value_t = 299792458)]
seed: u64,
/// The length of the sample to generate (in tokens).
#[arg(long, short = 'n', default_value_t = 10000)]
sample_len: usize,
#[arg(long)]
model_id: Option<String>,
#[arg(long, default_value = "main")]
revision: String,
#[arg(long)]
tokenizer_file: Option<String>,
#[arg(long)]
config_file: Option<String>,
#[arg(long)]
weight_files: Option<String>,
/// Penalty to be applied for repeating tokens, 1. means no penalty.
#[arg(long, default_value_t = 1.1)]
repeat_penalty: f32,
/// The context size to consider for the repeat penalty.
#[arg(long, default_value_t = 64)]
repeat_last_n: usize,
#[arg(long)]
image: String,
#[arg(long)]
vision_only: bool,
}
fn main() -> Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;
let args = Args::parse();
let _guard = if args.tracing {
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};
println!(
"avx: {}, neon: {}, simd128: {}, f16c: {}",
candle::utils::with_avx(),
candle::utils::with_neon(),
candle::utils::with_simd128(),
candle::utils::with_f16c()
);
println!(
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
args.temperature.unwrap_or(0.),
args.repeat_penalty,
args.repeat_last_n
);
let start = std::time::Instant::now();
let api = Api::new()?;
let model_id = match &args.model_id {
Some(model_id) => model_id.to_string(),
None => "mistral-community/pixtral-12b".to_string(),
};
let repo = api.repo(Repo::with_revision(
model_id,
RepoType::Model,
args.revision,
));
let tokenizer_filename = match args.tokenizer_file {
Some(file) => std::path::PathBuf::from(file),
None => repo.get("tokenizer.json")?,
};
let filenames = match args.weight_files {
Some(files) => files
.split(',')
.map(std::path::PathBuf::from)
.collect::<Vec<_>>(),
None => candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?,
};
println!("retrieved the files in {:?}", start.elapsed());
let device = candle_examples::device(args.cpu)?;
let dtype = if device.supports_bf16() && !args.vision_only {
DType::BF16
} else {
DType::F32
};
let config: Config = match args.config_file {
Some(config_file) => serde_json::from_slice(&std::fs::read(config_file)?)?,
None => {
let config_file = repo.get("config.json")?;
serde_json::from_slice(&std::fs::read(config_file)?)?
}
};
let image = if args.image.ends_with(".safetensors") {
match candle::safetensors::load(&args.image, &device)?.remove("img") {
None => anyhow::bail!("no img tensor in {}", args.image),
Some(v) => v,
}
} else {
candle_examples::imagenet::load_image_with_std_mean(
&args.image,
1024,
&[0.48145466, 0.4578275, 0.40821073],
&[0.26862954, 0.261_302_6, 0.275_777_1],
)?
};
let image = image.to_device(&device)?.unsqueeze(0)?;
println!("loaded image with shape {:?}", image);
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
if args.vision_only {
let start = std::time::Instant::now();
let model = vision_model::Model::new(&config.vision_config, vb.pp("vision_tower"))?;
println!("loaded the model in {:?}", start.elapsed());
let embs = model.forward(&image)?;
println!("EMBS\n{embs}");
} else {
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
let start = std::time::Instant::now();
let model = Model::new(&config, vb)?;
println!("loaded the model in {:?}", start.elapsed());
let mut pipeline = TextGeneration::new(
model,
image,
tokenizer,
args.seed,
args.temperature,
args.top_p,
args.repeat_penalty,
args.repeat_last_n,
&device,
);
pipeline.run(&args.prompt, args.sample_len)?;
}
Ok(())
}