Files
candle/candle-examples/examples/yolo-v3/darknet.rs
Laurent Mazare a52b76ae82 Expose the cudnn algo in the conv ops. (#2892)
* Set the algo.

* Expose the cudnn preferred algo for conv ops.
2025-04-14 08:25:32 +02:00

314 lines
10 KiB
Rust

use candle::{DType, Device, IndexOp, Result, Tensor};
use candle_nn::{batch_norm, conv2d, conv2d_no_bias, Func, Module, VarBuilder};
use std::collections::BTreeMap;
use std::fs::File;
use std::io::{BufRead, BufReader};
use std::path::Path;
#[derive(Debug)]
struct Block {
block_type: String,
parameters: BTreeMap<String, String>,
}
impl Block {
fn get(&self, key: &str) -> Result<&str> {
match self.parameters.get(key) {
None => candle::bail!("cannot find {} in {}", key, self.block_type),
Some(value) => Ok(value),
}
}
}
#[derive(Debug)]
pub struct Darknet {
blocks: Vec<Block>,
parameters: BTreeMap<String, String>,
}
impl Darknet {
fn get(&self, key: &str) -> Result<&str> {
match self.parameters.get(key) {
None => candle::bail!("cannot find {} in net parameters", key),
Some(value) => Ok(value),
}
}
}
struct Accumulator {
block_type: Option<String>,
parameters: BTreeMap<String, String>,
net: Darknet,
}
impl Accumulator {
fn new() -> Accumulator {
Accumulator {
block_type: None,
parameters: BTreeMap::new(),
net: Darknet {
blocks: vec![],
parameters: BTreeMap::new(),
},
}
}
fn finish_block(&mut self) {
match &self.block_type {
None => (),
Some(block_type) => {
if block_type == "net" {
self.net.parameters = self.parameters.clone();
} else {
let block = Block {
block_type: block_type.to_string(),
parameters: self.parameters.clone(),
};
self.net.blocks.push(block);
}
self.parameters.clear();
}
}
self.block_type = None;
}
}
pub fn parse_config<T: AsRef<Path>>(path: T) -> Result<Darknet> {
let file = File::open(path.as_ref())?;
let mut acc = Accumulator::new();
for line in BufReader::new(file).lines() {
let line = line?;
if line.is_empty() || line.starts_with('#') {
continue;
}
let line = line.trim();
if line.starts_with('[') {
if !line.ends_with(']') {
candle::bail!("line does not end with ']' {line}")
}
let line = &line[1..line.len() - 1];
acc.finish_block();
acc.block_type = Some(line.to_string());
} else {
let key_value: Vec<&str> = line.splitn(2, '=').collect();
if key_value.len() != 2 {
candle::bail!("missing equal {line}")
}
let prev = acc.parameters.insert(
key_value[0].trim().to_owned(),
key_value[1].trim().to_owned(),
);
if prev.is_some() {
candle::bail!("multiple value for key {}", line)
}
}
}
acc.finish_block();
Ok(acc.net)
}
enum Bl {
Layer(Box<dyn candle_nn::Module + Send + Sync>),
Route(Vec<usize>),
Shortcut(usize),
Yolo(usize, Vec<(usize, usize)>),
}
fn conv(vb: VarBuilder, index: usize, p: usize, b: &Block) -> Result<(usize, Bl)> {
let activation = b.get("activation")?;
let filters = b.get("filters")?.parse::<usize>()?;
let pad = b.get("pad")?.parse::<usize>()?;
let size = b.get("size")?.parse::<usize>()?;
let stride = b.get("stride")?.parse::<usize>()?;
let padding = if pad != 0 { (size - 1) / 2 } else { 0 };
let (bn, bias) = match b.parameters.get("batch_normalize") {
Some(p) if p.parse::<usize>()? != 0 => {
let bn = batch_norm(filters, 1e-5, vb.pp(format!("batch_norm_{index}")))?;
(Some(bn), false)
}
Some(_) | None => (None, true),
};
let conv_cfg = candle_nn::Conv2dConfig {
stride,
padding,
groups: 1,
dilation: 1,
cudnn_fwd_algo: None,
};
let conv = if bias {
conv2d(p, filters, size, conv_cfg, vb.pp(format!("conv_{index}")))?
} else {
conv2d_no_bias(p, filters, size, conv_cfg, vb.pp(format!("conv_{index}")))?
};
let leaky = match activation {
"leaky" => true,
"linear" => false,
otherwise => candle::bail!("unsupported activation {}", otherwise),
};
let func = candle_nn::func(move |xs| {
let xs = conv.forward(xs)?;
let xs = match &bn {
Some(bn) => xs.apply_t(bn, false)?,
None => xs,
};
let xs = if leaky {
xs.maximum(&(&xs * 0.1)?)?
} else {
xs
};
Ok(xs)
});
Ok((filters, Bl::Layer(Box::new(func))))
}
fn upsample(prev_channels: usize) -> Result<(usize, Bl)> {
let layer = candle_nn::func(|xs| {
let (_n, _c, h, w) = xs.dims4()?;
xs.upsample_nearest2d(2 * h, 2 * w)
});
Ok((prev_channels, Bl::Layer(Box::new(layer))))
}
fn int_list_of_string(s: &str) -> Result<Vec<i64>> {
let res: std::result::Result<Vec<_>, _> =
s.split(',').map(|xs| xs.trim().parse::<i64>()).collect();
Ok(res?)
}
fn usize_of_index(index: usize, i: i64) -> usize {
if i >= 0 {
i as usize
} else {
(index as i64 + i) as usize
}
}
fn route(index: usize, p: &[(usize, Bl)], block: &Block) -> Result<(usize, Bl)> {
let layers = int_list_of_string(block.get("layers")?)?;
let layers: Vec<usize> = layers
.into_iter()
.map(|l| usize_of_index(index, l))
.collect();
let channels = layers.iter().map(|&l| p[l].0).sum();
Ok((channels, Bl::Route(layers)))
}
fn shortcut(index: usize, p: usize, block: &Block) -> Result<(usize, Bl)> {
let from = block.get("from")?.parse::<i64>()?;
Ok((p, Bl::Shortcut(usize_of_index(index, from))))
}
fn yolo(p: usize, block: &Block) -> Result<(usize, Bl)> {
let classes = block.get("classes")?.parse::<usize>()?;
let flat = int_list_of_string(block.get("anchors")?)?;
if flat.len() % 2 != 0 {
candle::bail!("even number of anchors");
}
let flat = flat.into_iter().map(|i| i as usize).collect::<Vec<_>>();
let anchors: Vec<_> = (0..(flat.len() / 2))
.map(|i| (flat[2 * i], flat[2 * i + 1]))
.collect();
let mask = int_list_of_string(block.get("mask")?)?;
let anchors = mask.into_iter().map(|i| anchors[i as usize]).collect();
Ok((p, Bl::Yolo(classes, anchors)))
}
fn detect(
xs: &Tensor,
image_height: usize,
classes: usize,
anchors: &[(usize, usize)],
) -> Result<Tensor> {
let (bsize, _channels, height, _width) = xs.dims4()?;
let stride = image_height / height;
let grid_size = image_height / stride;
let bbox_attrs = 5 + classes;
let nanchors = anchors.len();
let xs = xs
.reshape((bsize, bbox_attrs * nanchors, grid_size * grid_size))?
.transpose(1, 2)?
.contiguous()?
.reshape((bsize, grid_size * grid_size * nanchors, bbox_attrs))?;
let grid = Tensor::arange(0u32, grid_size as u32, &Device::Cpu)?;
let a = grid.repeat((grid_size, 1))?;
let b = a.t()?.contiguous()?;
let x_offset = a.flatten_all()?.unsqueeze(1)?;
let y_offset = b.flatten_all()?.unsqueeze(1)?;
let xy_offset = Tensor::cat(&[&x_offset, &y_offset], 1)?
.repeat((1, nanchors))?
.reshape((grid_size * grid_size * nanchors, 2))?
.unsqueeze(0)?
.to_dtype(DType::F32)?;
let anchors: Vec<f32> = anchors
.iter()
.flat_map(|&(x, y)| vec![x as f32 / stride as f32, y as f32 / stride as f32].into_iter())
.collect();
let anchors = Tensor::new(anchors.as_slice(), &Device::Cpu)?
.reshape((anchors.len() / 2, 2))?
.repeat((grid_size * grid_size, 1))?
.unsqueeze(0)?;
let ys02 = xs.i((.., .., 0..2))?;
let ys24 = xs.i((.., .., 2..4))?;
let ys4 = xs.i((.., .., 4..))?;
let ys02 = (candle_nn::ops::sigmoid(&ys02)?.add(&xy_offset)? * stride as f64)?;
let ys24 = (ys24.exp()?.mul(&anchors)? * stride as f64)?;
let ys4 = candle_nn::ops::sigmoid(&ys4)?;
let ys = Tensor::cat(&[ys02, ys24, ys4], 2)?;
Ok(ys)
}
impl Darknet {
pub fn height(&self) -> Result<usize> {
let image_height = self.get("height")?.parse::<usize>()?;
Ok(image_height)
}
pub fn width(&self) -> Result<usize> {
let image_width = self.get("width")?.parse::<usize>()?;
Ok(image_width)
}
pub fn build_model(&self, vb: VarBuilder) -> Result<Func> {
let mut blocks: Vec<(usize, Bl)> = vec![];
let mut prev_channels: usize = 3;
for (index, block) in self.blocks.iter().enumerate() {
let channels_and_bl = match block.block_type.as_str() {
"convolutional" => conv(vb.pp(index.to_string()), index, prev_channels, block)?,
"upsample" => upsample(prev_channels)?,
"shortcut" => shortcut(index, prev_channels, block)?,
"route" => route(index, &blocks, block)?,
"yolo" => yolo(prev_channels, block)?,
otherwise => candle::bail!("unsupported block type {}", otherwise),
};
prev_channels = channels_and_bl.0;
blocks.push(channels_and_bl);
}
let image_height = self.height()?;
let func = candle_nn::func(move |xs| {
let mut prev_ys: Vec<Tensor> = vec![];
let mut detections: Vec<Tensor> = vec![];
for (_, b) in blocks.iter() {
let ys = match b {
Bl::Layer(l) => {
let xs = prev_ys.last().unwrap_or(xs);
l.forward(xs)?
}
Bl::Route(layers) => {
let layers: Vec<_> = layers.iter().map(|&i| &prev_ys[i]).collect();
Tensor::cat(&layers, 1)?
}
Bl::Shortcut(from) => (prev_ys.last().unwrap() + prev_ys.get(*from).unwrap())?,
Bl::Yolo(classes, anchors) => {
let xs = prev_ys.last().unwrap_or(xs);
detections.push(detect(xs, image_height, *classes, anchors)?);
Tensor::new(&[0u32], &Device::Cpu)?
}
};
prev_ys.push(ys);
}
Tensor::cat(&detections, 1)
});
Ok(func)
}
}