Files
candle/candle-core/tests/custom_op_tests.rs
Laurent Mazare a6bcdfb269 Custom ops with a single argument (#214)
* Add the CustomOp1 trait.

* Add an example of custom op.

* Polish the custom op example.

* Add some backward pass test for custom ops.
2023-07-21 15:18:05 +01:00

158 lines
4.5 KiB
Rust

use candle::backend::BackendStorage;
use candle::cpu_backend;
use candle::{CpuStorage, CustomOp1, DType, Device, Error, Layout, Result, Shape, Tensor};
use half::{bf16, f16};
mod test_utils;
use test_utils::to_vec1_round;
fn fwd<T: num_traits::Float>(v: T, alpha: T) -> T {
if v.is_sign_positive() {
v
} else {
(v.exp() - T::one()) * alpha
}
}
struct Elu {
alpha: f64,
}
impl CustomOp1 for Elu {
fn name(&self) -> &'static str {
"elu"
}
fn cpu_fwd(&self, s: &CpuStorage, l: &Layout) -> Result<(CpuStorage, Shape)> {
use CpuStorage::*;
// In this example, we pattern match over the different dtypes. Some helper functions and
// traits from the `cpu_backend` module can be used to avoid this in some common cases, see
// e.g. `Map1`.
let storage = match s {
BF16(s) => {
let alpha = bf16::from_f64(self.alpha);
let data = cpu_backend::unary_map(s, l, |v| fwd(v, alpha));
BF16(data)
}
F16(s) => {
let alpha = f16::from_f64(self.alpha);
let data = cpu_backend::unary_map(s, l, |v| fwd(v, alpha));
F16(data)
}
F32(s) => {
let alpha = self.alpha as f32;
let data = cpu_backend::unary_map(s, l, |v| fwd(v, alpha));
F32(data)
}
F64(s) => {
let data = cpu_backend::unary_map(s, l, |v| fwd(v, self.alpha));
F64(data)
}
_ => Err(Error::UnsupportedDTypeForOp(s.dtype(), "elu").bt())?,
};
Ok((storage, l.shape().clone()))
}
}
#[test]
fn custom_op1_no_backward() -> Result<()> {
let cpu = &Device::Cpu;
let t = Tensor::arange(0u32, 12u32, cpu)?.to_dtype(DType::F32)?;
let t = (t - 5.)?;
let elu_t = t.custom_op1(Elu { alpha: 1. })?;
assert_eq!(
to_vec1_round(&elu_t, 4)?,
&[-0.9933, -0.9817, -0.9502, -0.8647, -0.6321, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
);
Ok(())
}
// Define a similar struct as Elu but with backward support.
fn bwd<T: num_traits::Float>(v: T, alpha: T) -> T {
if v.is_sign_positive() {
T::one()
} else {
v.exp() * alpha
}
}
struct EluBackward {
alpha: f64,
}
impl CustomOp1 for EluBackward {
fn name(&self) -> &'static str {
"elu-bwd"
}
fn cpu_fwd(&self, s: &CpuStorage, l: &Layout) -> Result<(CpuStorage, Shape)> {
use CpuStorage::*;
// In this example, we pattern match over the different dtypes. Some helper functions and
// traits from the `cpu_backend` module can be used to avoid this in some common cases, see
// e.g. `Map1`.
let storage = match s {
BF16(s) => {
let alpha = bf16::from_f64(self.alpha);
let data = cpu_backend::unary_map(s, l, |v| bwd(v, alpha));
BF16(data)
}
F16(s) => {
let alpha = f16::from_f64(self.alpha);
let data = cpu_backend::unary_map(s, l, |v| bwd(v, alpha));
F16(data)
}
F32(s) => {
let alpha = self.alpha as f32;
let data = cpu_backend::unary_map(s, l, |v| bwd(v, alpha));
F32(data)
}
F64(s) => {
let data = cpu_backend::unary_map(s, l, |v| bwd(v, self.alpha));
F64(data)
}
_ => Err(Error::UnsupportedDTypeForOp(s.dtype(), "elu").bt())?,
};
Ok((storage, l.shape().clone()))
}
}
struct EluWithBackward(Elu);
impl EluWithBackward {
fn new(alpha: f64) -> Self {
Self(Elu { alpha })
}
}
impl CustomOp1 for EluWithBackward {
fn name(&self) -> &'static str {
"elu"
}
fn cpu_fwd(&self, s: &CpuStorage, l: &Layout) -> Result<(CpuStorage, Shape)> {
self.0.cpu_fwd(s, l)
}
fn bwd(&self, arg: &Tensor, _res: &Tensor, grad_res: &Tensor) -> Result<Tensor> {
let alpha = self.0.alpha;
let bwd = arg.custom_op1(EluBackward { alpha })?;
grad_res.mul(&bwd)
}
}
#[test]
fn custom_op1_with_backward() -> Result<()> {
let cpu = &Device::Cpu;
let t = candle::Var::new(&[-2f32, 0f32, 2f32], cpu)?;
let elu_t = t.custom_op1(EluWithBackward::new(2.))?;
assert_eq!(to_vec1_round(&elu_t, 4)?, &[-1.7293, 0.0, 2.0]);
let grads = elu_t.backward()?;
let grad_x = grads.get(&t).unwrap();
assert_eq!(to_vec1_round(grad_x, 4)?, [0.2707, 1.0, 1.0]);
Ok(())
}