mirror of
https://github.com/huggingface/candle.git
synced 2025-06-18 19:47:12 +00:00
402 lines
15 KiB
Rust
402 lines
15 KiB
Rust
//! Numpy support for literals.
|
|
//!
|
|
//! The spec for the npy format can be found in
|
|
//! [npy-format](https://docs.scipy.org/doc/numpy-1.14.2/neps/npy-format.html).
|
|
//! The functions from this module can be used to read literals from npy/npz files
|
|
//! or write literals to these files. A npy file contains a single literal (unnamed)
|
|
//! whereas a npz file can contain multiple named literals. npz files are also compressed.
|
|
//!
|
|
//! These two formats are easy to use in Python using the numpy library.
|
|
//!
|
|
//! ```python
|
|
//! import numpy as np
|
|
//! x = np.arange(10)
|
|
//!
|
|
//! # Write a npy file.
|
|
//! np.save("test.npy", x)
|
|
//!
|
|
//! # Read a value from the npy file.
|
|
//! x = np.load("test.npy")
|
|
//!
|
|
//! # Write multiple values to a npz file.
|
|
//! values = { "x": x, "x_plus_one": x + 1 }
|
|
//! np.savez("test.npz", **values)
|
|
//!
|
|
//! # Load multiple values from a npz file.
|
|
//! values = np.loadz("test.npz")
|
|
//! ```
|
|
use crate::{DType, Device, Error, Result, Shape, Tensor};
|
|
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
|
|
use half::{bf16, f16, slice::HalfFloatSliceExt};
|
|
use std::collections::HashMap;
|
|
use std::fs::File;
|
|
use std::io::{BufReader, Read, Write};
|
|
use std::path::Path;
|
|
|
|
const NPY_MAGIC_STRING: &[u8] = b"\x93NUMPY";
|
|
const NPY_SUFFIX: &str = ".npy";
|
|
|
|
fn read_header<R: Read>(reader: &mut R) -> Result<String> {
|
|
let mut magic_string = vec![0u8; NPY_MAGIC_STRING.len()];
|
|
reader.read_exact(&mut magic_string)?;
|
|
if magic_string != NPY_MAGIC_STRING {
|
|
return Err(Error::Npy("magic string mismatch".to_string()));
|
|
}
|
|
let mut version = [0u8; 2];
|
|
reader.read_exact(&mut version)?;
|
|
let header_len_len = match version[0] {
|
|
1 => 2,
|
|
2 => 4,
|
|
otherwise => return Err(Error::Npy(format!("unsupported version {otherwise}"))),
|
|
};
|
|
let mut header_len = vec![0u8; header_len_len];
|
|
reader.read_exact(&mut header_len)?;
|
|
let header_len = header_len
|
|
.iter()
|
|
.rev()
|
|
.fold(0_usize, |acc, &v| 256 * acc + v as usize);
|
|
let mut header = vec![0u8; header_len];
|
|
reader.read_exact(&mut header)?;
|
|
Ok(String::from_utf8_lossy(&header).to_string())
|
|
}
|
|
|
|
#[derive(Debug, PartialEq)]
|
|
struct Header {
|
|
descr: DType,
|
|
fortran_order: bool,
|
|
shape: Vec<usize>,
|
|
}
|
|
|
|
impl Header {
|
|
fn shape(&self) -> Shape {
|
|
Shape::from(self.shape.as_slice())
|
|
}
|
|
|
|
fn to_string(&self) -> Result<String> {
|
|
let fortran_order = if self.fortran_order { "True" } else { "False" };
|
|
let mut shape = self
|
|
.shape
|
|
.iter()
|
|
.map(|x| x.to_string())
|
|
.collect::<Vec<_>>()
|
|
.join(",");
|
|
let descr = match self.descr {
|
|
DType::BF16 => Err(Error::Npy("bf16 is not supported".into()))?,
|
|
DType::F16 => "f2",
|
|
DType::F32 => "f4",
|
|
DType::F64 => "f8",
|
|
DType::U32 => "u4",
|
|
};
|
|
if !shape.is_empty() {
|
|
shape.push(',')
|
|
}
|
|
Ok(format!(
|
|
"{{'descr': '<{descr}', 'fortran_order': {fortran_order}, 'shape': ({shape}), }}"
|
|
))
|
|
}
|
|
|
|
// Hacky parser for the npy header, a typical example would be:
|
|
// {'descr': '<f8', 'fortran_order': False, 'shape': (128,), }
|
|
fn parse(header: &str) -> Result<Header> {
|
|
let header =
|
|
header.trim_matches(|c: char| c == '{' || c == '}' || c == ',' || c.is_whitespace());
|
|
|
|
let mut parts: Vec<String> = vec![];
|
|
let mut start_index = 0usize;
|
|
let mut cnt_parenthesis = 0i64;
|
|
for (index, c) in header.chars().enumerate() {
|
|
match c {
|
|
'(' => cnt_parenthesis += 1,
|
|
')' => cnt_parenthesis -= 1,
|
|
',' => {
|
|
if cnt_parenthesis == 0 {
|
|
parts.push(header[start_index..index].to_owned());
|
|
start_index = index + 1;
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
parts.push(header[start_index..].to_owned());
|
|
let mut part_map: HashMap<String, String> = HashMap::new();
|
|
for part in parts.iter() {
|
|
let part = part.trim();
|
|
if !part.is_empty() {
|
|
match part.split(':').collect::<Vec<_>>().as_slice() {
|
|
[key, value] => {
|
|
let key = key.trim_matches(|c: char| c == '\'' || c.is_whitespace());
|
|
let value = value.trim_matches(|c: char| c == '\'' || c.is_whitespace());
|
|
let _ = part_map.insert(key.to_owned(), value.to_owned());
|
|
}
|
|
_ => return Err(Error::Npy(format!("unable to parse header {header}"))),
|
|
}
|
|
}
|
|
}
|
|
let fortran_order = match part_map.get("fortran_order") {
|
|
None => false,
|
|
Some(fortran_order) => match fortran_order.as_ref() {
|
|
"False" => false,
|
|
"True" => true,
|
|
_ => return Err(Error::Npy(format!("unknown fortran_order {fortran_order}"))),
|
|
},
|
|
};
|
|
let descr = match part_map.get("descr") {
|
|
None => return Err(Error::Npy("no descr in header".to_string())),
|
|
Some(descr) => {
|
|
if descr.is_empty() {
|
|
return Err(Error::Npy("empty descr".to_string()));
|
|
}
|
|
if descr.starts_with('>') {
|
|
return Err(Error::Npy(format!("little-endian descr {descr}")));
|
|
}
|
|
// the only supported types in tensor are:
|
|
// float64, float32, float16,
|
|
// complex64, complex128,
|
|
// int64, int32, int16, int8,
|
|
// uint8, and bool.
|
|
match descr.trim_matches(|c: char| c == '=' || c == '<' || c == '|') {
|
|
"e" | "f2" => DType::F16,
|
|
"f" | "f4" => DType::F32,
|
|
"d" | "f8" => DType::F64,
|
|
// "i" | "i4" => DType::S32,
|
|
// "q" | "i8" => DType::S64,
|
|
// "h" | "i2" => DType::S16,
|
|
// "b" | "i1" => DType::S8,
|
|
// "B" | "u1" => DType::U8,
|
|
"I" | "u4" => DType::U32,
|
|
// "?" | "b1" => DType::Pred,
|
|
// "F" | "F4" => DType::C64,
|
|
// "D" | "F8" => DType::C128,
|
|
descr => return Err(Error::Npy(format!("unrecognized descr {descr}"))),
|
|
}
|
|
}
|
|
};
|
|
let shape = match part_map.get("shape") {
|
|
None => return Err(Error::Npy("no shape in header".to_string())),
|
|
Some(shape) => {
|
|
let shape = shape.trim_matches(|c: char| c == '(' || c == ')' || c == ',');
|
|
if shape.is_empty() {
|
|
vec![]
|
|
} else {
|
|
shape
|
|
.split(',')
|
|
.map(|v| v.trim().parse::<usize>())
|
|
.collect::<std::result::Result<Vec<_>, _>>()?
|
|
}
|
|
}
|
|
};
|
|
Ok(Header {
|
|
descr,
|
|
fortran_order,
|
|
shape,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl Tensor {
|
|
// TODO: Add the possibility to read directly to a device?
|
|
fn from_reader<R: std::io::Read>(shape: Shape, dtype: DType, reader: &mut R) -> Result<Self> {
|
|
let elem_count = shape.elem_count();
|
|
match dtype {
|
|
DType::BF16 => {
|
|
let mut data_t = vec![bf16::ZERO; elem_count];
|
|
reader.read_u16_into::<LittleEndian>(data_t.reinterpret_cast_mut())?;
|
|
Tensor::from_vec(data_t, shape, &Device::Cpu)
|
|
}
|
|
DType::F16 => {
|
|
let mut data_t = vec![f16::ZERO; elem_count];
|
|
reader.read_u16_into::<LittleEndian>(data_t.reinterpret_cast_mut())?;
|
|
Tensor::from_vec(data_t, shape, &Device::Cpu)
|
|
}
|
|
DType::F32 => {
|
|
let mut data_t = vec![0f32; elem_count];
|
|
reader.read_f32_into::<LittleEndian>(&mut data_t)?;
|
|
Tensor::from_vec(data_t, shape, &Device::Cpu)
|
|
}
|
|
DType::F64 => {
|
|
let mut data_t = vec![0f64; elem_count];
|
|
reader.read_f64_into::<LittleEndian>(&mut data_t)?;
|
|
Tensor::from_vec(data_t, shape, &Device::Cpu)
|
|
}
|
|
DType::U32 => {
|
|
let mut data_t = vec![0u32; elem_count];
|
|
reader.read_u32_into::<LittleEndian>(&mut data_t)?;
|
|
Tensor::from_vec(data_t, shape, &Device::Cpu)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Reads a npy file and return the stored multi-dimensional array as a literal.
|
|
pub fn read_npy<T: AsRef<Path>>(path: T) -> Result<Self> {
|
|
let mut reader = File::open(path.as_ref())?;
|
|
let header = read_header(&mut reader)?;
|
|
let header = Header::parse(&header)?;
|
|
if header.fortran_order {
|
|
return Err(Error::Npy("fortran order not supported".to_string()));
|
|
}
|
|
let mut data: Vec<u8> = vec![];
|
|
reader.read_to_end(&mut data)?;
|
|
Self::from_reader(header.shape(), header.descr, &mut reader)
|
|
}
|
|
|
|
/// Reads a npz file and returns the stored multi-dimensional arrays together with their names.
|
|
pub fn read_npz<T: AsRef<Path>>(path: T) -> Result<Vec<(String, Self)>> {
|
|
let zip_reader = BufReader::new(File::open(path.as_ref())?);
|
|
let mut zip = zip::ZipArchive::new(zip_reader)?;
|
|
let mut result = vec![];
|
|
for i in 0..zip.len() {
|
|
let mut reader = zip.by_index(i).unwrap();
|
|
let name = {
|
|
let name = reader.name();
|
|
name.strip_suffix(NPY_SUFFIX).unwrap_or(name).to_owned()
|
|
};
|
|
let header = read_header(&mut reader)?;
|
|
let header = Header::parse(&header)?;
|
|
if header.fortran_order {
|
|
return Err(Error::Npy("fortran order not supported".to_string()));
|
|
}
|
|
let s = Self::from_reader(header.shape(), header.descr, &mut reader)?;
|
|
result.push((name, s))
|
|
}
|
|
Ok(result)
|
|
}
|
|
|
|
/// Reads a npz file and returns the stored multi-dimensional arrays for some specified names.
|
|
pub fn read_npz_by_name<T: AsRef<Path>>(path: T, names: &[&str]) -> Result<Vec<Self>> {
|
|
let zip_reader = BufReader::new(File::open(path.as_ref())?);
|
|
let mut zip = zip::ZipArchive::new(zip_reader)?;
|
|
let mut result = vec![];
|
|
for name in names.iter() {
|
|
let mut reader = match zip.by_name(&format!("{name}{NPY_SUFFIX}")) {
|
|
Ok(reader) => reader,
|
|
Err(_) => Err(Error::Npy(format!(
|
|
"no array for {name} in {:?}",
|
|
path.as_ref()
|
|
)))?,
|
|
};
|
|
let header = read_header(&mut reader)?;
|
|
let header = Header::parse(&header)?;
|
|
if header.fortran_order {
|
|
return Err(Error::Npy("fortran order not supported".to_string()));
|
|
}
|
|
let s = Self::from_reader(header.shape(), header.descr, &mut reader)?;
|
|
result.push(s)
|
|
}
|
|
Ok(result)
|
|
}
|
|
|
|
fn write<T: Write>(&self, f: &mut T) -> Result<()> {
|
|
f.write_all(NPY_MAGIC_STRING)?;
|
|
f.write_all(&[1u8, 0u8])?;
|
|
let header = Header {
|
|
descr: self.dtype(),
|
|
fortran_order: false,
|
|
shape: self.dims().to_vec(),
|
|
};
|
|
let mut header = header.to_string()?;
|
|
let pad = 16 - (NPY_MAGIC_STRING.len() + 5 + header.len()) % 16;
|
|
for _ in 0..pad % 16 {
|
|
header.push(' ')
|
|
}
|
|
header.push('\n');
|
|
f.write_all(&[(header.len() % 256) as u8, (header.len() / 256) as u8])?;
|
|
f.write_all(header.as_bytes())?;
|
|
let elem_count = self.elem_count();
|
|
match self.dtype() {
|
|
DType::BF16 => {
|
|
let vs = self.reshape(elem_count)?.to_vec1::<bf16>()?;
|
|
for &v in vs.reinterpret_cast() {
|
|
f.write_u16::<LittleEndian>(v)?
|
|
}
|
|
}
|
|
DType::F16 => {
|
|
let vs = self.reshape(elem_count)?.to_vec1::<f16>()?;
|
|
for &v in vs.reinterpret_cast() {
|
|
f.write_u16::<LittleEndian>(v)?
|
|
}
|
|
}
|
|
DType::F32 => {
|
|
// TODO: Avoid using a buffer when data is already on the CPU.
|
|
for v in self.reshape(elem_count)?.to_vec1::<f32>()? {
|
|
f.write_f32::<LittleEndian>(v)?
|
|
}
|
|
}
|
|
DType::F64 => {
|
|
for v in self.reshape(elem_count)?.to_vec1::<f64>()? {
|
|
f.write_f64::<LittleEndian>(v)?
|
|
}
|
|
}
|
|
DType::U32 => {
|
|
for v in self.reshape(elem_count)?.to_vec1::<u32>()? {
|
|
f.write_u32::<LittleEndian>(v)?
|
|
}
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Writes a multi-dimensional array in the npy format.
|
|
pub fn write_npy<T: AsRef<Path>>(&self, path: T) -> Result<()> {
|
|
let mut f = File::create(path.as_ref())?;
|
|
self.write(&mut f)
|
|
}
|
|
|
|
/// Writes multiple multi-dimensional arrays using the npz format.
|
|
pub fn write_npz<S: AsRef<str>, T: AsRef<Tensor>, P: AsRef<Path>>(
|
|
ts: &[(S, T)],
|
|
path: P,
|
|
) -> Result<()> {
|
|
let mut zip = zip::ZipWriter::new(File::create(path.as_ref())?);
|
|
let options =
|
|
zip::write::FileOptions::default().compression_method(zip::CompressionMethod::Stored);
|
|
|
|
for (name, tensor) in ts.iter() {
|
|
zip.start_file(format!("{}.npy", name.as_ref()), options)?;
|
|
tensor.as_ref().write(&mut zip)?
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::Header;
|
|
|
|
#[test]
|
|
fn parse() {
|
|
let h = "{'descr': '<f8', 'fortran_order': False, 'shape': (128,), }";
|
|
assert_eq!(
|
|
Header::parse(h).unwrap(),
|
|
Header {
|
|
descr: crate::DType::F64,
|
|
fortran_order: false,
|
|
shape: vec![128]
|
|
}
|
|
);
|
|
let h = "{'descr': '<f4', 'fortran_order': True, 'shape': (256,1,128), }";
|
|
let h = Header::parse(h).unwrap();
|
|
assert_eq!(
|
|
h,
|
|
Header {
|
|
descr: crate::DType::F32,
|
|
fortran_order: true,
|
|
shape: vec![256, 1, 128]
|
|
}
|
|
);
|
|
assert_eq!(
|
|
h.to_string().unwrap(),
|
|
"{'descr': '<f4', 'fortran_order': True, 'shape': (256,1,128,), }"
|
|
);
|
|
|
|
let h = Header {
|
|
descr: crate::DType::U32,
|
|
fortran_order: false,
|
|
shape: vec![],
|
|
};
|
|
assert_eq!(
|
|
h.to_string().unwrap(),
|
|
"{'descr': '<u4', 'fortran_order': False, 'shape': (), }"
|
|
);
|
|
}
|
|
}
|