mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 02:38:10 +00:00

* Skeleton files for musicgen. * Add a musicgen model module. * Sketch the model loading. * Start adding the forward pass. * More forward pass. * Positional embeddings. * Forward for the decoder layers. * Add an empty function. * Fix the musicgen weight names. * More musicgen modeling. * Add the T5 loading bits. * Add the encodec config. * Add the encodec module hierarchy. * More Encodec modeling. * Encodec modeling. * Encodec modeling. * Add more to the encodec modeling. * Load the weights. * Populate the resnet blocks. * Also load the conv transpose weights. * Split musicgen in multiple files.
178 lines
5.3 KiB
Rust
178 lines
5.3 KiB
Rust
#![allow(dead_code)]
|
|
// TODO: Add an offline mode.
|
|
|
|
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
use anyhow::{Error as E, Result};
|
|
use candle::{DType, Device, Tensor, D};
|
|
use candle_hub::{api::sync::Api, Repo, RepoType};
|
|
use clap::Parser;
|
|
use rand::{distributions::Distribution, SeedableRng};
|
|
use tokenizers::Tokenizer;
|
|
|
|
mod model;
|
|
use model::{Config, Falcon, VarBuilder};
|
|
|
|
#[cfg(feature = "mkl")]
|
|
const DTYPE: DType = DType::F32;
|
|
#[cfg(not(feature = "mkl"))]
|
|
const DTYPE: DType = DType::BF16;
|
|
|
|
struct TextGeneration {
|
|
model: Falcon,
|
|
rng: rand::rngs::StdRng,
|
|
device: Device,
|
|
temperature: Option<f64>,
|
|
tokenizer: Tokenizer,
|
|
}
|
|
|
|
impl TextGeneration {
|
|
fn new(
|
|
model: Falcon,
|
|
tokenizer: Tokenizer,
|
|
seed: u64,
|
|
temperature: Option<f64>,
|
|
device: &Device,
|
|
) -> Self {
|
|
Self {
|
|
model,
|
|
tokenizer,
|
|
rng: rand::rngs::StdRng::seed_from_u64(seed),
|
|
temperature,
|
|
device: device.clone(),
|
|
}
|
|
}
|
|
|
|
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
|
|
println!("starting the inference loop");
|
|
let mut tokens = self
|
|
.tokenizer
|
|
.encode(prompt, true)
|
|
.map_err(E::msg)?
|
|
.get_ids()
|
|
.to_vec();
|
|
|
|
let mut new_tokens = vec![];
|
|
let start_gen = std::time::Instant::now();
|
|
for index in 0..sample_len {
|
|
let start_gen = std::time::Instant::now();
|
|
let context_size = if self.model.config().use_cache && index > 0 {
|
|
1
|
|
} else {
|
|
tokens.len()
|
|
};
|
|
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
|
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
|
|
let logits = self.model.forward(&input)?;
|
|
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
|
|
|
|
let next_token = if let Some(temperature) = self.temperature {
|
|
let prs = (&logits / temperature)?.softmax(D::Minus1)?;
|
|
let logits_v: Vec<f32> = prs.to_vec1()?;
|
|
let distr = rand::distributions::WeightedIndex::new(&logits_v)?;
|
|
distr.sample(&mut self.rng) as u32
|
|
} else {
|
|
let logits_v: Vec<f32> = logits.to_vec1()?;
|
|
logits_v
|
|
.iter()
|
|
.enumerate()
|
|
.max_by(|(_, u), (_, v)| u.total_cmp(v))
|
|
.map(|(i, _)| i as u32)
|
|
.unwrap()
|
|
};
|
|
tokens.push(next_token);
|
|
new_tokens.push(next_token);
|
|
println!("> {:?}", start_gen.elapsed());
|
|
println!(
|
|
"{} token: {} '{}'",
|
|
index + 1,
|
|
next_token,
|
|
self.tokenizer
|
|
.decode(vec![next_token], true)
|
|
.map_err(E::msg)?
|
|
);
|
|
}
|
|
let dt = start_gen.elapsed();
|
|
println!(
|
|
"{sample_len} tokens generated ({} token/s)\n----\n{}\n----",
|
|
sample_len as f64 / dt.as_secs_f64(),
|
|
self.tokenizer.decode(new_tokens, true).map_err(E::msg)?
|
|
);
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[derive(Parser, Debug)]
|
|
#[command(author, version, about, long_about = None)]
|
|
struct Args {
|
|
/// Run on CPU rather than on GPU.
|
|
#[arg(long)]
|
|
cpu: bool,
|
|
|
|
#[arg(long)]
|
|
prompt: String,
|
|
|
|
/// The temperature used to generate samples.
|
|
#[arg(long)]
|
|
temperature: Option<f64>,
|
|
|
|
/// The seed to use when generating random samples.
|
|
#[arg(long, default_value_t = 299792458)]
|
|
seed: u64,
|
|
|
|
/// The length of the sample to generate (in tokens).
|
|
#[arg(long, default_value_t = 100)]
|
|
sample_len: usize,
|
|
|
|
#[arg(long, default_value = "tiiuae/falcon-7b")]
|
|
model_id: String,
|
|
|
|
#[arg(long, default_value = "refs/pr/43")]
|
|
revision: String,
|
|
}
|
|
|
|
fn main() -> Result<()> {
|
|
let args = Args::parse();
|
|
let device = if args.cpu {
|
|
Device::Cpu
|
|
} else {
|
|
Device::new_cuda(0)?
|
|
};
|
|
|
|
let start = std::time::Instant::now();
|
|
let api = Api::new()?;
|
|
let repo = Repo::with_revision(args.model_id, RepoType::Model, args.revision);
|
|
let tokenizer_filename = api.get(&repo, "tokenizer.json")?;
|
|
let mut filenames = vec![];
|
|
for rfilename in [
|
|
"model-00001-of-00002.safetensors",
|
|
"model-00002-of-00002.safetensors",
|
|
] {
|
|
let filename = api.get(&repo, rfilename)?;
|
|
filenames.push(filename);
|
|
}
|
|
println!("retrieved the files in {:?}", start.elapsed());
|
|
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
|
|
|
let start = std::time::Instant::now();
|
|
let weights = filenames
|
|
.iter()
|
|
.map(|f| Ok(unsafe { candle::safetensors::MmapedFile::new(f)? }))
|
|
.collect::<Result<Vec<_>>>()?;
|
|
let weights = weights
|
|
.iter()
|
|
.map(|f| Ok(f.deserialize()?))
|
|
.collect::<Result<Vec<_>>>()?;
|
|
|
|
let vb = VarBuilder::from_safetensors(weights, DTYPE, &device);
|
|
let config = Config::falcon7b();
|
|
config.validate()?;
|
|
let model = Falcon::load(&vb, config)?;
|
|
println!("loaded the model in {:?}", start.elapsed());
|
|
|
|
let mut pipeline = TextGeneration::new(model, tokenizer, args.seed, args.temperature, &device);
|
|
pipeline.run(&args.prompt, args.sample_len)?;
|
|
Ok(())
|
|
}
|