mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 19:18:50 +00:00
337 lines
11 KiB
Rust
337 lines
11 KiB
Rust
use crate::model::{Cache, Config, Llama};
|
|
use byteorder::{LittleEndian, ReadBytesExt};
|
|
use candle::{DType, Device, IndexOp, Result, Shape, Tensor};
|
|
use candle_nn::VarBuilder;
|
|
use candle_transformers::generation::LogitsProcessor;
|
|
use serde::{Deserialize, Serialize};
|
|
use tokenizers::Tokenizer;
|
|
use wasm_bindgen::prelude::*;
|
|
use yew_agent::{HandlerId, Public, WorkerLink};
|
|
|
|
#[wasm_bindgen]
|
|
extern "C" {
|
|
// Use `js_namespace` here to bind `console.log(..)` instead of just
|
|
// `log(..)`
|
|
#[wasm_bindgen(js_namespace = console)]
|
|
pub fn log(s: &str);
|
|
}
|
|
|
|
#[macro_export]
|
|
macro_rules! console_log {
|
|
// Note that this is using the `log` function imported above during
|
|
// `bare_bones`
|
|
($($t:tt)*) => ($crate::worker::log(&format_args!($($t)*).to_string()))
|
|
}
|
|
|
|
// Communication to the worker happens through bincode, the model weights and configs are fetched
|
|
// on the main thread and transferred via the following structure.
|
|
#[derive(Serialize, Deserialize)]
|
|
pub struct ModelData {
|
|
pub tokenizer: Vec<u8>,
|
|
pub model: Vec<u8>,
|
|
}
|
|
|
|
fn read_i32<R: std::io::Read>(r: &mut R) -> Result<i32> {
|
|
let mut buf = [0u8; 4];
|
|
r.read_exact(&mut buf)?;
|
|
Ok(i32::from_le_bytes(buf))
|
|
}
|
|
|
|
fn read_tensor<R: std::io::Read, S: Into<Shape>>(
|
|
r: &mut R,
|
|
shape: S,
|
|
dev: &Device,
|
|
) -> Result<Tensor> {
|
|
let shape = shape.into();
|
|
let mut data_t = vec![0f32; shape.elem_count()];
|
|
r.read_f32_into::<LittleEndian>(&mut data_t)?;
|
|
let tensor = Tensor::from_vec(data_t, shape, dev)?;
|
|
Ok(tensor)
|
|
}
|
|
|
|
pub struct Model {
|
|
pub cache: Cache,
|
|
pub config: Config,
|
|
pub llama: Llama,
|
|
pub tokenizer: Tokenizer,
|
|
}
|
|
|
|
impl Model {
|
|
fn run(
|
|
&self,
|
|
link: &WorkerLink<Worker>,
|
|
id: HandlerId,
|
|
temp: f64,
|
|
top_p: f64,
|
|
prompt: String,
|
|
) -> Result<()> {
|
|
let dev = Device::Cpu;
|
|
let temp = if temp <= 0. { None } else { Some(temp) };
|
|
let top_p = if top_p <= 0. || top_p >= 1.0 {
|
|
None
|
|
} else {
|
|
Some(top_p)
|
|
};
|
|
console_log!("temp: {temp:?} top_p: {top_p:?} prompt: {prompt}");
|
|
let mut logits_processor = LogitsProcessor::new(299792458, temp, top_p);
|
|
let mut index_pos = 0;
|
|
let mut tokens = self
|
|
.tokenizer
|
|
.encode(prompt.to_string(), true)
|
|
.map_err(|m| candle::Error::Msg(m.to_string()))?
|
|
.get_ids()
|
|
.to_vec();
|
|
link.respond(id, Ok(WorkerOutput::Generated(prompt)));
|
|
|
|
for index in 0.. {
|
|
if tokens.len() >= self.config.seq_len {
|
|
break;
|
|
}
|
|
let context_size = if self.cache.use_kv_cache && index > 0 {
|
|
1
|
|
} else {
|
|
tokens.len()
|
|
};
|
|
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
|
let input = Tensor::new(ctxt, &dev)?.unsqueeze(0)?;
|
|
let logits = self.llama.forward(&input, index_pos)?;
|
|
let logits = logits.squeeze(0)?;
|
|
index_pos += ctxt.len();
|
|
|
|
let next_token = logits_processor.sample(&logits)?;
|
|
tokens.push(next_token);
|
|
if let Some(text) = self.tokenizer.id_to_token(next_token) {
|
|
let text = text.replace('▁', " ").replace("<0x0A>", "\n");
|
|
link.respond(id, Ok(WorkerOutput::Generated(text)));
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl Config {
|
|
fn from_reader<R: std::io::Read>(r: &mut R) -> Result<Self> {
|
|
let dim = read_i32(r)? as usize;
|
|
let hidden_dim = read_i32(r)? as usize;
|
|
let n_layers = read_i32(r)? as usize;
|
|
let n_heads = read_i32(r)? as usize;
|
|
let n_kv_heads = read_i32(r)? as usize;
|
|
let vocab_size = read_i32(r)? as usize;
|
|
let seq_len = read_i32(r)? as usize;
|
|
Ok(Self {
|
|
dim,
|
|
hidden_dim,
|
|
n_layers,
|
|
n_heads,
|
|
n_kv_heads,
|
|
vocab_size,
|
|
seq_len,
|
|
norm_eps: 1e-5,
|
|
})
|
|
}
|
|
|
|
pub fn head_size(&self) -> usize {
|
|
self.dim / self.n_heads
|
|
}
|
|
}
|
|
|
|
struct TransformerWeights {
|
|
// token embedding table
|
|
token_embedding_table: Tensor, // (vocab_size, dim)
|
|
// weights for rmsnorms
|
|
rms_att_weight: Tensor, // (layer, dim) rmsnorm weights
|
|
rms_ffn_weight: Tensor, // (layer, dim)
|
|
// weights for matmuls
|
|
wq: Tensor, // (layer, dim, dim)
|
|
wk: Tensor, // (layer, dim, dim)
|
|
wv: Tensor, // (layer, dim, dim)
|
|
wo: Tensor, // (layer, dim, dim)
|
|
// weights for ffn
|
|
w1: Tensor, // (layer, hidden_dim, dim)
|
|
w2: Tensor, // (layer, dim, hidden_dim)
|
|
w3: Tensor, // (layer, hidden_dim, dim)
|
|
// final rmsnorm
|
|
rms_final_weight: Tensor, // (dim,)
|
|
// freq_cis for RoPE relatively positional embeddings
|
|
freq_cis_real: Tensor, // (seq_len, head_size/2)
|
|
freq_cis_imag: Tensor, // (seq_len, head_size/2)
|
|
}
|
|
|
|
impl TransformerWeights {
|
|
fn from_reader<R: std::io::Read>(r: &mut R, c: &Config, dev: &Device) -> Result<Self> {
|
|
let token_embedding_table = read_tensor(r, (c.vocab_size, c.dim), dev)?;
|
|
let rms_att_weight = read_tensor(r, (c.n_layers, c.dim), dev)?;
|
|
let wq = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
|
let wk = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
|
let wv = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
|
let wo = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
|
let rms_ffn_weight = read_tensor(r, (c.n_layers, c.dim), dev)?;
|
|
let w1 = read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
|
|
let w2 = read_tensor(r, (c.n_layers, c.dim, c.hidden_dim), dev)?;
|
|
let w3 = read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
|
|
let rms_final_weight = read_tensor(r, c.dim, dev)?;
|
|
let head_size = c.head_size();
|
|
let freq_cis_real = read_tensor(r, (c.seq_len, head_size / 2), dev)?;
|
|
let freq_cis_imag = read_tensor(r, (c.seq_len, head_size / 2), dev)?;
|
|
Ok(Self {
|
|
token_embedding_table,
|
|
rms_att_weight,
|
|
wq,
|
|
wk,
|
|
wv,
|
|
wo,
|
|
rms_ffn_weight,
|
|
w1,
|
|
w2,
|
|
w3,
|
|
rms_final_weight,
|
|
freq_cis_real,
|
|
freq_cis_imag,
|
|
})
|
|
}
|
|
|
|
fn var_builder(&self, cfg: &Config, device: &Device) -> Result<VarBuilder> {
|
|
let mut ws = std::collections::HashMap::new();
|
|
let mut insert = |name: &str, t: Tensor| {
|
|
ws.insert(name.to_string(), t);
|
|
};
|
|
insert("rot.freq_cis_real", self.freq_cis_real.clone());
|
|
insert("rot.freq_cis_imag", self.freq_cis_imag.clone());
|
|
insert(
|
|
"model.embed_tokens.weight",
|
|
self.token_embedding_table.clone(),
|
|
);
|
|
insert("lm_head.weight", self.token_embedding_table.clone());
|
|
insert("model.norm.weight", self.rms_final_weight.clone());
|
|
for layer in 0..cfg.n_layers {
|
|
ws.insert(
|
|
format!("model.layers.{layer}.self_attn.q_proj.weight"),
|
|
self.wq.i(layer)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.self_attn.k_proj.weight"),
|
|
self.wk.i(layer)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.self_attn.v_proj.weight"),
|
|
self.wv.i(layer)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.self_attn.o_proj.weight"),
|
|
self.wo.i(layer)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.mlp.gate_proj.weight"),
|
|
self.w1.i(layer)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.mlp.down_proj.weight"),
|
|
self.w2.i(layer)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.mlp.up_proj.weight"),
|
|
self.w3.i(layer)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.input_layernorm.weight"),
|
|
self.rms_att_weight.i(layer)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.post_attention_layernorm.weight"),
|
|
self.rms_ffn_weight.i(layer)?,
|
|
);
|
|
}
|
|
let vb = VarBuilder::from_tensors(ws, DType::F32, device);
|
|
Ok(vb)
|
|
}
|
|
}
|
|
|
|
impl Model {
|
|
pub fn load(md: ModelData) -> Result<Self> {
|
|
let dev = Device::Cpu;
|
|
let mut model = std::io::Cursor::new(md.model);
|
|
let config = Config::from_reader(&mut model)?;
|
|
let weights = TransformerWeights::from_reader(&mut model, &config, &dev)?;
|
|
let vb = weights.var_builder(&config, &dev)?;
|
|
let cache = Cache::new(true, &config, vb.pp("rot"))?;
|
|
let llama = Llama::load(vb, &cache, &config)?;
|
|
let tokenizer =
|
|
Tokenizer::from_bytes(&md.tokenizer).map_err(|m| candle::Error::Msg(m.to_string()))?;
|
|
Ok(Self {
|
|
cache,
|
|
config,
|
|
llama,
|
|
tokenizer,
|
|
})
|
|
}
|
|
}
|
|
|
|
pub struct Worker {
|
|
link: WorkerLink<Self>,
|
|
model: Option<Model>,
|
|
}
|
|
|
|
#[derive(Serialize, Deserialize)]
|
|
pub enum WorkerInput {
|
|
ModelData(ModelData),
|
|
Run(f64, f64, String),
|
|
}
|
|
|
|
#[derive(Serialize, Deserialize)]
|
|
pub enum WorkerOutput {
|
|
Generated(String),
|
|
GenerationDone(std::result::Result<(), String>),
|
|
WeightsLoaded,
|
|
}
|
|
|
|
impl yew_agent::Worker for Worker {
|
|
type Input = WorkerInput;
|
|
type Message = ();
|
|
type Output = std::result::Result<WorkerOutput, String>;
|
|
type Reach = Public<Self>;
|
|
|
|
fn create(link: WorkerLink<Self>) -> Self {
|
|
Self { link, model: None }
|
|
}
|
|
|
|
fn update(&mut self, _msg: Self::Message) {
|
|
// no messaging
|
|
}
|
|
|
|
fn handle_input(&mut self, msg: Self::Input, id: HandlerId) {
|
|
let output = match msg {
|
|
WorkerInput::ModelData(md) => match Model::load(md) {
|
|
Ok(model) => {
|
|
self.model = Some(model);
|
|
Ok(WorkerOutput::WeightsLoaded)
|
|
}
|
|
Err(err) => Err(format!("model creation error {err:?}")),
|
|
},
|
|
WorkerInput::Run(temp, top_p, prompt) => match &mut self.model {
|
|
None => Err("model has not been set yet".to_string()),
|
|
Some(model) => {
|
|
{
|
|
let mut cache = model.cache.kvs.lock().unwrap();
|
|
for elem in cache.iter_mut() {
|
|
*elem = None
|
|
}
|
|
}
|
|
let result = model
|
|
.run(&self.link, id, temp, top_p, prompt)
|
|
.map_err(|e| e.to_string());
|
|
Ok(WorkerOutput::GenerationDone(result))
|
|
}
|
|
},
|
|
};
|
|
self.link.respond(id, output);
|
|
}
|
|
|
|
fn name_of_resource() -> &'static str {
|
|
"worker.js"
|
|
}
|
|
|
|
fn resource_path_is_relative() -> bool {
|
|
true
|
|
}
|
|
}
|