mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 02:38:10 +00:00

* quantized deepseek qwen generating tokens * removed is_deepseek from Args and replaced prompt if statement with pattern matching
325 lines
11 KiB
Rust
325 lines
11 KiB
Rust
#[cfg(feature = "mkl")]
|
||
extern crate intel_mkl_src;
|
||
|
||
#[cfg(feature = "accelerate")]
|
||
extern crate accelerate_src;
|
||
|
||
use clap::{Parser, ValueEnum};
|
||
use std::io::Write;
|
||
use tokenizers::Tokenizer;
|
||
|
||
use candle::quantized::gguf_file;
|
||
use candle::Tensor;
|
||
use candle_transformers::generation::{LogitsProcessor, Sampling};
|
||
|
||
use candle_examples::token_output_stream::TokenOutputStream;
|
||
use candle_transformers::models::quantized_qwen2::ModelWeights as Qwen2;
|
||
|
||
const DEFAULT_PROMPT: &str = "Write a function to count prime numbers up to N. ";
|
||
|
||
#[derive(Clone, Debug, Copy, PartialEq, Eq, ValueEnum)]
|
||
enum Which {
|
||
#[value(name = "0.5b")]
|
||
W2_0_5b,
|
||
#[value(name = "1.5b")]
|
||
W2_1_5b,
|
||
#[value(name = "7b")]
|
||
W2_7b,
|
||
#[value(name = "72b")]
|
||
W2_72b,
|
||
#[value(name = "deepseekr1-qwen7b")]
|
||
DeepseekR1Qwen7B,
|
||
}
|
||
|
||
#[derive(Parser, Debug)]
|
||
#[command(author, version, about, long_about = None)]
|
||
struct Args {
|
||
/// GGUF file to load, typically a .gguf file generated by the quantize command from llama.cpp
|
||
#[arg(long)]
|
||
model: Option<String>,
|
||
|
||
/// The initial prompt, use 'interactive' for entering multiple prompts in an interactive way
|
||
/// and 'chat' for an interactive model where history of previous prompts and generated tokens
|
||
/// is preserved.
|
||
#[arg(long)]
|
||
prompt: Option<String>,
|
||
|
||
/// The length of the sample to generate (in tokens).
|
||
#[arg(short = 'n', long, default_value_t = 1000)]
|
||
sample_len: usize,
|
||
|
||
/// The tokenizer config in json format.
|
||
#[arg(long)]
|
||
tokenizer: Option<String>,
|
||
|
||
/// The temperature used to generate samples, use 0 for greedy sampling.
|
||
#[arg(long, default_value_t = 0.8)]
|
||
temperature: f64,
|
||
|
||
/// Nucleus sampling probability cutoff.
|
||
#[arg(long)]
|
||
top_p: Option<f64>,
|
||
|
||
/// Only sample among the top K samples.
|
||
#[arg(long)]
|
||
top_k: Option<usize>,
|
||
|
||
/// The seed to use when generating random samples.
|
||
#[arg(long, default_value_t = 299792458)]
|
||
seed: u64,
|
||
|
||
/// Enable tracing (generates a trace-timestamp.json file).
|
||
#[arg(long)]
|
||
tracing: bool,
|
||
|
||
/// Process prompt elements separately.
|
||
#[arg(long)]
|
||
split_prompt: bool,
|
||
|
||
/// Run on CPU rather than GPU even if a GPU is available.
|
||
#[arg(long)]
|
||
cpu: bool,
|
||
|
||
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
||
#[arg(long, default_value_t = 1.1)]
|
||
repeat_penalty: f32,
|
||
|
||
/// The context size to consider for the repeat penalty.
|
||
#[arg(long, default_value_t = 64)]
|
||
repeat_last_n: usize,
|
||
|
||
/// The model size to use.
|
||
#[arg(long, default_value = "0.5b")]
|
||
which: Which,
|
||
}
|
||
|
||
impl Args {
|
||
fn tokenizer(&self) -> anyhow::Result<Tokenizer> {
|
||
let tokenizer_path = match &self.tokenizer {
|
||
Some(config) => std::path::PathBuf::from(config),
|
||
None => {
|
||
let api = hf_hub::api::sync::Api::new()?;
|
||
let repo = match self.which {
|
||
Which::W2_0_5b => "Qwen/Qwen2-0.5B-Instruct",
|
||
Which::W2_1_5b => "Qwen/Qwen2-1.5B-Instruct",
|
||
Which::W2_7b => "Qwen/Qwen2-7B-Instruct",
|
||
Which::W2_72b => "Qwen/Qwen2-72B-Instruct",
|
||
Which::DeepseekR1Qwen7B => "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B",
|
||
};
|
||
let api = api.model(repo.to_string());
|
||
api.get("tokenizer.json")?
|
||
}
|
||
};
|
||
Tokenizer::from_file(tokenizer_path).map_err(anyhow::Error::msg)
|
||
}
|
||
|
||
fn model(&self) -> anyhow::Result<std::path::PathBuf> {
|
||
let model_path = match &self.model {
|
||
Some(config) => std::path::PathBuf::from(config),
|
||
None => {
|
||
let (repo, filename, revision) = match self.which {
|
||
Which::W2_0_5b => (
|
||
"Qwen/Qwen2-0.5B-Instruct-GGUF",
|
||
"qwen2-0_5b-instruct-q4_0.gguf",
|
||
"main",
|
||
),
|
||
Which::W2_1_5b => (
|
||
"Qwen/Qwen2-1.5B-Instruct-GGUF",
|
||
"qwen2-1_5b-instruct-q4_0.gguf",
|
||
"main",
|
||
),
|
||
Which::W2_7b => (
|
||
"Qwen/Qwen2-7B-Instruct-GGUF",
|
||
"qwen2-7b-instruct-q4_0.gguf",
|
||
"main",
|
||
),
|
||
Which::W2_72b => (
|
||
"Qwen/Qwen2-72B-Instruct-GGUF",
|
||
"qwen2-72b-instruct-q4_0.gguf",
|
||
"main",
|
||
),
|
||
Which::DeepseekR1Qwen7B => (
|
||
"unsloth/DeepSeek-R1-Distill-Qwen-7B-GGUF",
|
||
"DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf",
|
||
"main",
|
||
),
|
||
};
|
||
let api = hf_hub::api::sync::Api::new()?;
|
||
api.repo(hf_hub::Repo::with_revision(
|
||
repo.to_string(),
|
||
hf_hub::RepoType::Model,
|
||
revision.to_string(),
|
||
))
|
||
.get(filename)?
|
||
}
|
||
};
|
||
Ok(model_path)
|
||
}
|
||
}
|
||
|
||
fn format_size(size_in_bytes: usize) -> String {
|
||
if size_in_bytes < 1_000 {
|
||
format!("{}B", size_in_bytes)
|
||
} else if size_in_bytes < 1_000_000 {
|
||
format!("{:.2}KB", size_in_bytes as f64 / 1e3)
|
||
} else if size_in_bytes < 1_000_000_000 {
|
||
format!("{:.2}MB", size_in_bytes as f64 / 1e6)
|
||
} else {
|
||
format!("{:.2}GB", size_in_bytes as f64 / 1e9)
|
||
}
|
||
}
|
||
|
||
fn main() -> anyhow::Result<()> {
|
||
use tracing_chrome::ChromeLayerBuilder;
|
||
use tracing_subscriber::prelude::*;
|
||
|
||
let args = Args::parse();
|
||
let _guard = if args.tracing {
|
||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||
tracing_subscriber::registry().with(chrome_layer).init();
|
||
Some(guard)
|
||
} else {
|
||
None
|
||
};
|
||
|
||
println!(
|
||
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
||
candle::utils::with_avx(),
|
||
candle::utils::with_neon(),
|
||
candle::utils::with_simd128(),
|
||
candle::utils::with_f16c()
|
||
);
|
||
println!(
|
||
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
||
args.temperature, args.repeat_penalty, args.repeat_last_n
|
||
);
|
||
|
||
let model_path = args.model()?;
|
||
let mut file = std::fs::File::open(&model_path)?;
|
||
let start = std::time::Instant::now();
|
||
let device = candle_examples::device(args.cpu)?;
|
||
|
||
let mut model = {
|
||
let model = gguf_file::Content::read(&mut file).map_err(|e| e.with_path(model_path))?;
|
||
let mut total_size_in_bytes = 0;
|
||
for (_, tensor) in model.tensor_infos.iter() {
|
||
let elem_count = tensor.shape.elem_count();
|
||
total_size_in_bytes +=
|
||
elem_count * tensor.ggml_dtype.type_size() / tensor.ggml_dtype.block_size();
|
||
}
|
||
println!(
|
||
"loaded {:?} tensors ({}) in {:.2}s",
|
||
model.tensor_infos.len(),
|
||
&format_size(total_size_in_bytes),
|
||
start.elapsed().as_secs_f32(),
|
||
);
|
||
Qwen2::from_gguf(model, &mut file, &device)?
|
||
};
|
||
println!("model built");
|
||
|
||
let tokenizer = args.tokenizer()?;
|
||
let mut tos = TokenOutputStream::new(tokenizer);
|
||
let prompt_str = args
|
||
.prompt
|
||
.clone()
|
||
.unwrap_or_else(|| DEFAULT_PROMPT.to_string());
|
||
|
||
let prompt_str = match args.which {
|
||
Which::DeepseekR1Qwen7B => format!("<|User|>{prompt_str}<|Assistant|>"),
|
||
_ => format!("<|im_start|>user\n{prompt_str}<|im_end|>\n<|im_start|>assistant\n"),
|
||
};
|
||
print!("formatted instruct prompt: {}", &prompt_str);
|
||
let tokens = tos
|
||
.tokenizer()
|
||
.encode(prompt_str, true)
|
||
.map_err(anyhow::Error::msg)?;
|
||
let tokens = tokens.get_ids();
|
||
let to_sample = args.sample_len.saturating_sub(1);
|
||
let mut all_tokens = vec![];
|
||
let mut logits_processor = {
|
||
let temperature = args.temperature;
|
||
let sampling = if temperature <= 0. {
|
||
Sampling::ArgMax
|
||
} else {
|
||
match (args.top_k, args.top_p) {
|
||
(None, None) => Sampling::All { temperature },
|
||
(Some(k), None) => Sampling::TopK { k, temperature },
|
||
(None, Some(p)) => Sampling::TopP { p, temperature },
|
||
(Some(k), Some(p)) => Sampling::TopKThenTopP { k, p, temperature },
|
||
}
|
||
};
|
||
LogitsProcessor::from_sampling(args.seed, sampling)
|
||
};
|
||
let start_prompt_processing = std::time::Instant::now();
|
||
let mut next_token = if !args.split_prompt {
|
||
let input = Tensor::new(tokens, &device)?.unsqueeze(0)?;
|
||
let logits = model.forward(&input, 0)?;
|
||
let logits = logits.squeeze(0)?;
|
||
logits_processor.sample(&logits)?
|
||
} else {
|
||
let mut next_token = 0;
|
||
for (pos, token) in tokens.iter().enumerate() {
|
||
let input = Tensor::new(&[*token], &device)?.unsqueeze(0)?;
|
||
let logits = model.forward(&input, pos)?;
|
||
let logits = logits.squeeze(0)?;
|
||
next_token = logits_processor.sample(&logits)?
|
||
}
|
||
next_token
|
||
};
|
||
let prompt_dt = start_prompt_processing.elapsed();
|
||
all_tokens.push(next_token);
|
||
if let Some(t) = tos.next_token(next_token)? {
|
||
print!("{t}");
|
||
std::io::stdout().flush()?;
|
||
}
|
||
|
||
let eos_token = match args.which {
|
||
Which::DeepseekR1Qwen7B => "<|end▁of▁sentence|>",
|
||
_ => "<|im_end|>",
|
||
};
|
||
|
||
let eos_token = *tos.tokenizer().get_vocab(true).get(eos_token).unwrap();
|
||
let start_post_prompt = std::time::Instant::now();
|
||
let mut sampled = 0;
|
||
for index in 0..to_sample {
|
||
let input = Tensor::new(&[next_token], &device)?.unsqueeze(0)?;
|
||
let logits = model.forward(&input, tokens.len() + index)?;
|
||
let logits = logits.squeeze(0)?;
|
||
let logits = if args.repeat_penalty == 1. {
|
||
logits
|
||
} else {
|
||
let start_at = all_tokens.len().saturating_sub(args.repeat_last_n);
|
||
candle_transformers::utils::apply_repeat_penalty(
|
||
&logits,
|
||
args.repeat_penalty,
|
||
&all_tokens[start_at..],
|
||
)?
|
||
};
|
||
next_token = logits_processor.sample(&logits)?;
|
||
all_tokens.push(next_token);
|
||
if let Some(t) = tos.next_token(next_token)? {
|
||
print!("{t}");
|
||
std::io::stdout().flush()?;
|
||
}
|
||
sampled += 1;
|
||
if next_token == eos_token {
|
||
break;
|
||
};
|
||
}
|
||
if let Some(rest) = tos.decode_rest().map_err(candle::Error::msg)? {
|
||
print!("{rest}");
|
||
}
|
||
std::io::stdout().flush()?;
|
||
let dt = start_post_prompt.elapsed();
|
||
println!(
|
||
"\n\n{:4} prompt tokens processed: {:.2} token/s",
|
||
tokens.len(),
|
||
tokens.len() as f64 / prompt_dt.as_secs_f64(),
|
||
);
|
||
println!(
|
||
"{sampled:4} tokens generated: {:.2} token/s",
|
||
sampled as f64 / dt.as_secs_f64(),
|
||
);
|
||
Ok(())
|
||
}
|