Files
candle/candle-examples/examples/llama/model.rs
Laurent Mazare b3b39cca92 Llama batch (#144)
* Add a batch dimension to llama.

* Bugfixes.
2023-07-12 11:38:19 +01:00

346 lines
11 KiB
Rust

use candle::{DType, Device, IndexOp, Result, Tensor, D};
use candle_nn::{Embedding, Linear, VarBuilder};
use std::collections::HashMap;
use std::sync::{Arc, Mutex};
use super::MAX_SEQ_LEN;
pub struct Config {
pub hidden_size: usize,
pub intermediate_size: usize,
pub vocab_size: usize,
pub n_layer: usize,
pub n_head: usize,
pub n_embd: usize,
}
impl Config {
pub fn config_7b() -> Self {
Self {
hidden_size: 4096,
intermediate_size: 11008,
vocab_size: 32000,
n_layer: 32,
n_head: 32,
n_embd: 4096,
}
}
}
#[derive(Clone)]
pub struct Cache {
masks: Arc<Mutex<HashMap<usize, Tensor>>>,
pub use_kv_cache: bool,
#[allow(clippy::type_complexity)]
kvs: Arc<Mutex<Vec<Option<(Tensor, Tensor)>>>>,
device: Device,
}
impl Cache {
pub fn new(use_kv_cache: bool, config: &Config, device: &Device) -> Self {
Self {
masks: Arc::new(Mutex::new(HashMap::new())),
use_kv_cache,
kvs: Arc::new(Mutex::new(vec![None; config.n_layer])),
device: device.clone(),
}
}
fn mask(&self, t: usize) -> Result<Tensor> {
let mut masks = self.masks.lock().unwrap();
if let Some(mask) = masks.get(&t) {
Ok(mask.clone())
} else {
// TODO: If we support bool or u8 tensors, this would be better.
let mask: Vec<_> = (0..t)
.flat_map(|i| (0..t).map(move |j| u32::from(j > i)))
.collect();
let mask = Tensor::from_slice(&mask, (t, t), &self.device)?;
masks.insert(t, mask.clone());
Ok(mask)
}
}
}
fn silu(xs: &Tensor) -> Result<Tensor> {
xs / (xs.neg()?.exp()? + 1.0)?
}
fn linear(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
let weight = vb.get((size2, size1), "weight")?;
Ok(Linear::new(weight, None))
}
fn embedding(cfg: &Config, vb: VarBuilder) -> Result<Embedding> {
let embeddings = vb.get((cfg.vocab_size, cfg.hidden_size), "weight")?;
Ok(Embedding::new(embeddings, cfg.hidden_size))
}
struct RmsNorm {
scale: Tensor,
}
impl RmsNorm {
fn load(size: usize, vb: VarBuilder) -> Result<Self> {
let scale = vb.get(size, "weight")?;
Ok(Self::new(scale))
}
fn new(scale: Tensor) -> Self {
Self { scale }
}
fn forward(&self, x: &Tensor) -> Result<Tensor> {
let in_dtype = x.dtype();
// This is a no-op if x's dtype is already f32.
let x = x.to_dtype(DType::F32)?;
let (b_sz, seq_len, hidden_size) = x.shape().r3()?;
let norm_x = ((&x * &x)?.sum(&[2])? / hidden_size as f64)?;
let norm_x = norm_x.broadcast_as((b_sz, seq_len, hidden_size))?;
let x_normed = (x / (norm_x + 1e-5)?.sqrt()?)?;
let size = self.scale.shape().r1()?;
let scale = self
.scale
.to_dtype(DType::F32)?
.broadcast_as((b_sz, seq_len, size))?;
let x = (scale * x_normed)?;
let x = x.to_dtype(in_dtype)?;
Ok(x)
}
}
struct CausalSelfAttention {
c_attn: Linear,
c_proj: Linear,
n_head: usize,
cache: Cache,
}
impl CausalSelfAttention {
fn new(c_attn: Linear, c_proj: Linear, n_head: usize, cache: &Cache) -> Self {
Self {
c_attn,
c_proj,
n_head,
cache: cache.clone(),
}
}
fn apply_rotary_emb(&self, x: &Tensor, freqs_cis: &Tensor) -> Result<Tensor> {
let mut dims = x.dims().to_vec();
let fcis_dims = freqs_cis.dims();
let freqs_cis = if dims[2] < fcis_dims[1] {
freqs_cis.narrow(1, 0, dims[2])?
} else {
freqs_cis.clone()
};
let v = dims.pop().unwrap();
dims.push(v / 2);
dims.push(2);
let x = x.reshape(dims)?;
let re_x = x.narrow(D::Minus1, 0, 1)?;
let im_x = x.narrow(D::Minus1, 1, 1)?;
let re_f = freqs_cis
.narrow(D::Minus1, 0, 1)?
.broadcast_as(re_x.shape())?;
let im_f = freqs_cis
.narrow(D::Minus1, 1, 1)?
.broadcast_as(im_x.shape())?;
let re = ((&re_x * &re_f)? - (&im_x * &im_f)?)?;
let im = ((&re_x * &im_f)? + (&im_x * &re_f)?)?;
let rope = Tensor::cat(&[&re, &im], D::Minus1)?;
let rope = rope.flatten_from(D::Minus2)?;
Ok(rope)
}
fn forward(&self, x: &Tensor, freqs_cis: &Tensor, block_idx: usize) -> Result<Tensor> {
let x_dtype = x.dtype();
let (b_sz, seq_len, n_embd) = x.shape().r3()?;
let qkv = self.c_attn.forward(x)?;
let qkv = qkv.to_dtype(DType::F32)?;
let q = qkv.narrow(D::Minus1, 0, n_embd)?;
let k = qkv.narrow(D::Minus1, n_embd, n_embd)?;
let v = qkv.narrow(D::Minus1, 2 * n_embd, n_embd)?;
let target_dim = [b_sz, seq_len, self.n_head, n_embd / self.n_head];
let k = k.reshape(target_dim.as_slice())?.transpose(1, 2)?;
let q = q.reshape(target_dim.as_slice())?.transpose(1, 2)?;
let mut v = v.reshape(target_dim.as_slice())?.transpose(1, 2)?;
let q = self.apply_rotary_emb(&q, freqs_cis)?;
let mut k = self.apply_rotary_emb(&k, freqs_cis)?;
if self.cache.use_kv_cache {
let mut cache = self.cache.kvs.lock().unwrap();
if let Some((cache_k, cache_v)) = &cache[block_idx] {
k = Tensor::cat(&[cache_k, &k], 2)?.contiguous()?;
v = Tensor::cat(&[cache_v, &v], 2)?.contiguous()?;
let k_seq_len = k.dims()[1];
if k_seq_len > MAX_SEQ_LEN {
k = k
.narrow(D::Minus1, k_seq_len - MAX_SEQ_LEN, MAX_SEQ_LEN)?
.contiguous()?
}
let v_seq_len = v.dims()[1];
if v_seq_len > 2 * MAX_SEQ_LEN {
v = v
.narrow(D::Minus1, v_seq_len - MAX_SEQ_LEN, MAX_SEQ_LEN)?
.contiguous()?
}
}
cache[block_idx] = Some((k.clone(), v.clone()))
}
let att = (q.matmul(&k.t()?)? / (k.dim(D::Minus1)? as f64).sqrt())?;
let mask = self.cache.mask(seq_len)?.broadcast_as(att.shape())?;
let att = masked_fill(&att, &mask, f32::NEG_INFINITY)?;
let att = att.softmax(D::Minus1)?;
// Convert to contiguous as matmul doesn't support strided vs for now.
let y = att.matmul(&v.contiguous()?)?;
let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?;
let y = y.to_dtype(x_dtype)?;
let y = self.c_proj.forward(&y)?;
Ok(y)
}
fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
let size_in = cfg.hidden_size;
let size = (cfg.hidden_size / cfg.n_head) * cfg.n_head;
let q_proj = vb.get((size_in, size), "q_proj.weight")?;
let k_proj = vb.get((size_in, size), "k_proj.weight")?;
let v_proj = vb.get((size_in, size), "v_proj.weight")?;
// Invert the transformation from:
// https://github.com/huggingface/transformers/blob/2642d8d04b14c18199ebe7b35f976da02df61752/src/transformers/models/llama/convert_llama_weights_to_hf.py#L101
let n_head = cfg.n_head;
let q_proj = q_proj
.reshape((n_head, 2, size / n_head / 2, size_in))?
.transpose(1, 2)?
.reshape((size_in, size))?;
let k_proj = k_proj
.reshape((n_head, 2, size / n_head / 2, size_in))?
.transpose(1, 2)?
.reshape((size_in, size))?;
let attn_weight = Tensor::cat(&[q_proj, k_proj, v_proj], 0)?;
let c_attn = Linear::new(attn_weight, None);
let o_proj = linear(size, size_in, vb.pp("o_proj"))?;
Ok(Self::new(c_attn, o_proj, cfg.n_head, cache))
}
}
fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
let shape = mask.shape();
let on_true = Tensor::new(on_true, &on_false.device())?.broadcast_as(shape.dims())?;
let m = mask.where_cond(&on_true, on_false)?;
Ok(m)
}
struct Mlp {
c_fc1: Linear,
c_fc2: Linear,
c_proj: Linear,
}
impl Mlp {
fn new(c_fc1: Linear, c_fc2: Linear, c_proj: Linear) -> Self {
Self {
c_fc1,
c_fc2,
c_proj,
}
}
fn forward(&self, x: &Tensor) -> Result<Tensor> {
let x = (silu(&self.c_fc1.forward(x)?)? * self.c_fc2.forward(x)?)?;
self.c_proj.forward(&x)
}
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
let h_size = cfg.hidden_size;
let i_size = cfg.intermediate_size;
let c_fc1 = linear(h_size, i_size, vb.pp("gate_proj"))?;
let c_fc2 = linear(h_size, i_size, vb.pp("up_proj"))?;
let c_proj = linear(i_size, h_size, vb.pp("down_proj"))?;
Ok(Self::new(c_fc1, c_fc2, c_proj))
}
}
struct Block {
rms_1: RmsNorm,
attn: CausalSelfAttention,
rms_2: RmsNorm,
mlp: Mlp,
}
impl Block {
fn new(rms_1: RmsNorm, attn: CausalSelfAttention, rms_2: RmsNorm, mlp: Mlp) -> Self {
Self {
rms_1,
attn,
rms_2,
mlp,
}
}
fn forward(&self, x: &Tensor, freqs_cis: &Tensor, block_idx: usize) -> Result<Tensor> {
let x = (self
.attn
.forward(&self.rms_1.forward(x)?, freqs_cis, block_idx)?
+ x)?;
let x = (self.mlp.forward(&self.rms_2.forward(&x)?)? + x)?;
Ok(x)
}
fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
let attn = CausalSelfAttention::load(vb.pp("self_attn"), cache, cfg)?;
let mlp = Mlp::load(vb.pp("mlp"), cfg)?;
let input_layernorm = RmsNorm::load(cfg.hidden_size, vb.pp("input_layernorm"))?;
let post_attention_layernorm =
RmsNorm::load(cfg.hidden_size, vb.pp("post_attention_layernorm"))?;
Ok(Self::new(
input_layernorm,
attn,
post_attention_layernorm,
mlp,
))
}
}
pub struct Llama {
wte: Embedding,
blocks: Vec<Block>,
ln_f: RmsNorm,
lm_head: Linear,
}
impl Llama {
fn new(wte: Embedding, blocks: Vec<Block>, ln_f: RmsNorm, lm_head: Linear) -> Self {
Self {
wte,
blocks,
ln_f,
lm_head,
}
}
pub fn forward(&self, x: &Tensor, freqs_cis: &Tensor) -> Result<Tensor> {
let (_b_sz, seq_len) = x.shape().r2()?;
let mut x = self.wte.forward(x)?;
for (block_idx, block) in self.blocks.iter().enumerate() {
x = block.forward(&x, freqs_cis, block_idx)?;
}
let x = self.ln_f.forward(&x)?;
let x = x.i((.., seq_len - 1, ..))?;
let logits = self.lm_head.forward(&x)?;
logits.to_dtype(DType::F32)
}
pub fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
let wte = embedding(cfg, vb.pp("model.embed_tokens"))?;
let lm_head = linear(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?;
let norm = RmsNorm::load(cfg.hidden_size, vb.pp("model.norm"))?;
let blocks: Vec<_> = (0..cfg.n_layer)
.map(|i| Block::load(vb.pp(&format!("model.layers.{i}")), cache, cfg).unwrap())
.collect();
Ok(Self::new(wte, blocks, norm, lm_head))
}
}