mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00

* add support for conv transpose 2d and add bench mark for float types * update bench calculation * enable testing all conv operations on metal
60 lines
1.7 KiB
Rust
60 lines
1.7 KiB
Rust
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
|
|
use candle_core::{DType, Device, Tensor};
|
|
use criterion::{black_box, criterion_group, Criterion, Throughput};
|
|
use std::time::Instant;
|
|
|
|
fn run(
|
|
x: &Tensor,
|
|
k: &Tensor,
|
|
padding: usize,
|
|
output_padding: usize,
|
|
stride: usize,
|
|
dilation: usize,
|
|
) {
|
|
x.conv_transpose2d(k, padding, output_padding, stride, dilation)
|
|
.unwrap();
|
|
}
|
|
|
|
fn run_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &str) {
|
|
let t = Tensor::arange(0.0f32, 10000.0, device)
|
|
.unwrap()
|
|
.reshape((1, 4, 50, 50))
|
|
.unwrap()
|
|
.to_dtype(dtype)
|
|
.unwrap();
|
|
|
|
let kernel = Tensor::arange(0.0f32, 100.0, device)
|
|
.unwrap()
|
|
.reshape((4, 1, 5, 5))
|
|
.unwrap()
|
|
.to_dtype(dtype)
|
|
.unwrap();
|
|
|
|
let flops = t.dims().iter().product::<usize>() * dtype.size_in_bytes();
|
|
|
|
let mut group = c.benchmark_group(device.bench_name(name));
|
|
group.throughput(Throughput::Bytes(flops as u64));
|
|
group.bench_function("iter", move |b| {
|
|
b.iter_custom(|iters| {
|
|
let start = Instant::now();
|
|
for _i in 0..iters {
|
|
run(black_box(&t), black_box(&kernel), 1, 0, 1, 2);
|
|
}
|
|
device.sync().unwrap();
|
|
start.elapsed()
|
|
})
|
|
});
|
|
group.finish();
|
|
}
|
|
|
|
fn criterion_benchmark(c: &mut Criterion) {
|
|
let handler = BenchDeviceHandler::new().unwrap();
|
|
for device in handler.devices {
|
|
run_benchmark(c, &device, DType::F32, "conv_transpose2d_f32");
|
|
run_benchmark(c, &device, DType::F16, "conv_transpose2d_f16");
|
|
run_benchmark(c, &device, DType::BF16, "conv_transpose2d_bf16");
|
|
}
|
|
}
|
|
|
|
criterion_group!(benches, criterion_benchmark);
|