Files
candle/candle-examples/examples/simple-training/main.rs
2023-07-22 13:25:11 +01:00

49 lines
1.7 KiB
Rust

// This should rearch 91.5% accuracy.
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
use anyhow::Result;
use candle::{DType, Var, D};
use candle_nn::{loss, ops};
const IMAGE_DIM: usize = 784;
const LABELS: usize = 10;
pub fn main() -> Result<()> {
let dev = candle::Device::cuda_if_available(0)?;
let m = candle_nn::vision::mnist::load_dir("data")?;
println!("train-images: {:?}", m.train_images.shape());
println!("train-labels: {:?}", m.train_labels.shape());
println!("test-images: {:?}", m.test_images.shape());
println!("test-labels: {:?}", m.test_labels.shape());
let train_labels = m.train_labels;
let train_images = m.train_images;
let train_labels = train_labels.to_dtype(DType::U32)?.unsqueeze(1)?;
let ws = Var::zeros((IMAGE_DIM, LABELS), DType::F32, &dev)?;
let bs = Var::zeros(LABELS, DType::F32, &dev)?;
let sgd = candle_nn::SGD::new(&[&ws, &bs], 1.0);
let test_images = m.test_images;
let test_labels = m.test_labels.to_dtype(DType::U32)?;
for epoch in 1..200 {
let logits = train_images.matmul(&ws)?.broadcast_add(&bs)?;
let log_sm = ops::log_softmax(&logits, D::Minus1)?;
let loss = loss::nll(&log_sm, &train_labels)?;
sgd.backward_step(&loss)?;
let test_logits = test_images.matmul(&ws)?.broadcast_add(&bs)?;
let sum_ok = test_logits
.argmax(D::Minus1)?
.eq(&test_labels)?
.to_dtype(DType::F32)?
.sum_all()?
.to_scalar::<f32>()?;
let test_accuracy = sum_ok / test_labels.dims1()? as f32;
println!(
"{epoch:4} train loss: {:8.5} test acc: {:5.2}%",
loss.to_scalar::<f32>()?,
100. * test_accuracy
);
}
Ok(())
}