mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 18:28:24 +00:00
274 lines
8.6 KiB
Rust
274 lines
8.6 KiB
Rust
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
mod attention;
|
|
mod clip;
|
|
mod ddim;
|
|
mod embeddings;
|
|
mod resnet;
|
|
mod schedulers;
|
|
mod stable_diffusion;
|
|
mod unet_2d;
|
|
mod unet_2d_blocks;
|
|
mod utils;
|
|
mod vae;
|
|
|
|
use anyhow::{Error as E, Result};
|
|
use candle::{DType, Device, Tensor};
|
|
use clap::Parser;
|
|
use tokenizers::Tokenizer;
|
|
|
|
const GUIDANCE_SCALE: f64 = 7.5;
|
|
|
|
#[derive(Parser)]
|
|
#[command(author, version, about, long_about = None)]
|
|
struct Args {
|
|
/// The prompt to be used for image generation.
|
|
#[arg(
|
|
long,
|
|
default_value = "A very realistic photo of a rusty robot walking on a sandy beach"
|
|
)]
|
|
prompt: String,
|
|
|
|
#[arg(long, default_value = "")]
|
|
uncond_prompt: String,
|
|
|
|
/// Run on CPU rather than on GPU.
|
|
#[arg(long)]
|
|
cpu: bool,
|
|
|
|
/// The height in pixels of the generated image.
|
|
#[arg(long)]
|
|
height: Option<usize>,
|
|
|
|
/// The width in pixels of the generated image.
|
|
#[arg(long)]
|
|
width: Option<usize>,
|
|
|
|
/// The UNet weight file, in .ot or .safetensors format.
|
|
#[arg(long, value_name = "FILE")]
|
|
unet_weights: Option<String>,
|
|
|
|
/// The CLIP weight file, in .ot or .safetensors format.
|
|
#[arg(long, value_name = "FILE")]
|
|
clip_weights: Option<String>,
|
|
|
|
/// The VAE weight file, in .ot or .safetensors format.
|
|
#[arg(long, value_name = "FILE")]
|
|
vae_weights: Option<String>,
|
|
|
|
#[arg(long, value_name = "FILE")]
|
|
/// The file specifying the tokenizer to used for tokenization.
|
|
tokenizer: String,
|
|
|
|
/// The size of the sliced attention or 0 for automatic slicing (disabled by default)
|
|
#[arg(long)]
|
|
sliced_attention_size: Option<usize>,
|
|
|
|
/// The number of steps to run the diffusion for.
|
|
#[arg(long, default_value_t = 30)]
|
|
n_steps: usize,
|
|
|
|
/// The number of samples to generate.
|
|
#[arg(long, default_value_t = 1)]
|
|
num_samples: i64,
|
|
|
|
/// The name of the final image to generate.
|
|
#[arg(long, value_name = "FILE", default_value = "sd_final.png")]
|
|
final_image: String,
|
|
|
|
#[arg(long, value_enum, default_value = "v2-1")]
|
|
sd_version: StableDiffusionVersion,
|
|
|
|
/// Generate intermediary images at each step.
|
|
#[arg(long, action)]
|
|
intermediary_images: bool,
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy, clap::ValueEnum)]
|
|
enum StableDiffusionVersion {
|
|
V1_5,
|
|
V2_1,
|
|
}
|
|
|
|
impl Args {
|
|
fn clip_weights(&self) -> String {
|
|
match &self.clip_weights {
|
|
Some(w) => w.clone(),
|
|
None => match self.sd_version {
|
|
StableDiffusionVersion::V1_5 => "data/pytorch_model.safetensors".to_string(),
|
|
StableDiffusionVersion::V2_1 => "data/clip_v2.1.safetensors".to_string(),
|
|
},
|
|
}
|
|
}
|
|
|
|
fn vae_weights(&self) -> String {
|
|
match &self.vae_weights {
|
|
Some(w) => w.clone(),
|
|
None => match self.sd_version {
|
|
StableDiffusionVersion::V1_5 => "data/vae.safetensors".to_string(),
|
|
StableDiffusionVersion::V2_1 => "data/vae_v2.1.safetensors".to_string(),
|
|
},
|
|
}
|
|
}
|
|
|
|
fn unet_weights(&self) -> String {
|
|
match &self.unet_weights {
|
|
Some(w) => w.clone(),
|
|
None => match self.sd_version {
|
|
StableDiffusionVersion::V1_5 => "data/unet.safetensors".to_string(),
|
|
StableDiffusionVersion::V2_1 => "data/unet_v2.1.safetensors".to_string(),
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
fn output_filename(
|
|
basename: &str,
|
|
sample_idx: i64,
|
|
num_samples: i64,
|
|
timestep_idx: Option<usize>,
|
|
) -> String {
|
|
let filename = if num_samples > 1 {
|
|
match basename.rsplit_once('.') {
|
|
None => format!("{basename}.{sample_idx}.png"),
|
|
Some((filename_no_extension, extension)) => {
|
|
format!("{filename_no_extension}.{sample_idx}.{extension}")
|
|
}
|
|
}
|
|
} else {
|
|
basename.to_string()
|
|
};
|
|
match timestep_idx {
|
|
None => filename,
|
|
Some(timestep_idx) => match filename.rsplit_once('.') {
|
|
None => format!("{filename}-{timestep_idx}.png"),
|
|
Some((filename_no_extension, extension)) => {
|
|
format!("{filename_no_extension}-{timestep_idx}.{extension}")
|
|
}
|
|
},
|
|
}
|
|
}
|
|
|
|
fn run(args: Args) -> Result<()> {
|
|
let clip_weights = args.clip_weights();
|
|
let vae_weights = args.vae_weights();
|
|
let unet_weights = args.unet_weights();
|
|
let Args {
|
|
prompt,
|
|
uncond_prompt,
|
|
cpu,
|
|
height,
|
|
width,
|
|
n_steps,
|
|
tokenizer,
|
|
final_image,
|
|
sliced_attention_size,
|
|
num_samples,
|
|
sd_version,
|
|
..
|
|
} = args;
|
|
let sd_config = match sd_version {
|
|
StableDiffusionVersion::V1_5 => {
|
|
stable_diffusion::StableDiffusionConfig::v1_5(sliced_attention_size, height, width)
|
|
}
|
|
StableDiffusionVersion::V2_1 => {
|
|
stable_diffusion::StableDiffusionConfig::v2_1(sliced_attention_size, height, width)
|
|
}
|
|
};
|
|
|
|
let scheduler = sd_config.build_scheduler(n_steps)?;
|
|
let device = candle_examples::device(cpu)?;
|
|
|
|
let tokenizer = Tokenizer::from_file(tokenizer).map_err(E::msg)?;
|
|
let pad_id = match &sd_config.clip.pad_with {
|
|
Some(padding) => *tokenizer.get_vocab(true).get(padding.as_str()).unwrap(),
|
|
None => *tokenizer.get_vocab(true).get("<|endoftext|>").unwrap(),
|
|
};
|
|
println!("Running with prompt \"{prompt}\".");
|
|
let mut tokens = tokenizer
|
|
.encode(prompt, true)
|
|
.map_err(E::msg)?
|
|
.get_ids()
|
|
.to_vec();
|
|
while tokens.len() < sd_config.clip.max_position_embeddings {
|
|
tokens.push(pad_id)
|
|
}
|
|
let tokens = Tensor::new(tokens.as_slice(), &device)?.unsqueeze(0)?;
|
|
|
|
let mut uncond_tokens = tokenizer
|
|
.encode(uncond_prompt, true)
|
|
.map_err(E::msg)?
|
|
.get_ids()
|
|
.to_vec();
|
|
while uncond_tokens.len() < sd_config.clip.max_position_embeddings {
|
|
uncond_tokens.push(pad_id)
|
|
}
|
|
let uncond_tokens = Tensor::new(uncond_tokens.as_slice(), &device)?.unsqueeze(0)?;
|
|
|
|
println!("Building the Clip transformer.");
|
|
let text_model = sd_config.build_clip_transformer(&clip_weights, &device)?;
|
|
let text_embeddings = text_model.forward(&tokens)?;
|
|
let uncond_embeddings = text_model.forward(&uncond_tokens)?;
|
|
let text_embeddings = Tensor::cat(&[uncond_embeddings, text_embeddings], 0)?;
|
|
|
|
println!("Building the autoencoder.");
|
|
let vae = sd_config.build_vae(&vae_weights, &device)?;
|
|
println!("Building the unet.");
|
|
let unet = sd_config.build_unet(&unet_weights, &device, 4)?;
|
|
|
|
let bsize = 1;
|
|
for idx in 0..num_samples {
|
|
let mut latents = Tensor::randn(
|
|
0f32,
|
|
1f32,
|
|
(bsize, 4, sd_config.height / 8, sd_config.width / 8),
|
|
&device,
|
|
)?;
|
|
|
|
// scale the initial noise by the standard deviation required by the scheduler
|
|
latents = (latents * scheduler.init_noise_sigma())?;
|
|
|
|
for (timestep_index, ×tep) in scheduler.timesteps().iter().enumerate() {
|
|
println!("Timestep {timestep_index}/{n_steps}");
|
|
let latent_model_input = Tensor::cat(&[&latents, &latents], 0)?;
|
|
|
|
let latent_model_input = scheduler.scale_model_input(latent_model_input, timestep)?;
|
|
let noise_pred =
|
|
unet.forward(&latent_model_input, timestep as f64, &text_embeddings)?;
|
|
let noise_pred = noise_pred.chunk(2, 0)?;
|
|
let (noise_pred_uncond, noise_pred_text) = (&noise_pred[0], &noise_pred[1]);
|
|
let noise_pred =
|
|
(noise_pred_uncond + ((noise_pred_text - noise_pred_uncond)? * GUIDANCE_SCALE)?)?;
|
|
latents = scheduler.step(&noise_pred, timestep, &latents)?;
|
|
|
|
if args.intermediary_images {
|
|
let image = vae.decode(&(&latents / 0.18215)?)?;
|
|
let image = ((image / 2.)? + 0.5)?.to_device(&Device::Cpu)?;
|
|
let _image = (image * 255.)?.to_dtype(DType::U8);
|
|
let _image_filename =
|
|
output_filename(&final_image, idx + 1, num_samples, Some(timestep_index + 1));
|
|
// TODO: save igame
|
|
}
|
|
}
|
|
|
|
println!(
|
|
"Generating the final image for sample {}/{}.",
|
|
idx + 1,
|
|
num_samples
|
|
);
|
|
let image = vae.decode(&(&latents / 0.18215)?)?;
|
|
// TODO: Add the clamping between 0 and 1.
|
|
let image = ((image / 2.)? + 0.5)?.to_device(&Device::Cpu)?;
|
|
let _image = (image * 255.)?.to_dtype(DType::U8);
|
|
let _image_filename = output_filename(&final_image, idx + 1, num_samples, None);
|
|
// TODO: save image.
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn main() -> Result<()> {
|
|
let args = Args::parse();
|
|
run(args)
|
|
}
|