mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00

* onnx: fix pad, unsqueeze both implementations have off-by-one errors: - Pad 'reflect' cycle for eg `dim==3` is `[0,1,2,1]` which has length of 4 (or `dim*2 - 2`) not 5 (current code `dim*2 - 1`) - Unsqueeze(-1) for tensor with `dim==3` should be 3 (ie `dim+index+1`) not 2 (ie currently `dim+index`) in addition, Pad is incorrectly calculating the starting padding. If we want to pad out 2 elements to the start, and we have this cycle of indices of length 6, then we should skip 4 elements, but currently we skip 2. A more visual representation of what's going on is below: ``` pad_start: 2 data: [a,b,c,d] indices: [0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, 0, ..] // zigzag between 0..4 actual: skip [ c d| c b a b] expected: ~ skip ~ [ c b| a b c d] ``` The values between `[` and `|` are padding and the values between `|` and `]` in the example should match the original data being padded. * Fix clippy lints. --------- Co-authored-by: Laurent <laurent.mazare@gmail.com>
150 lines
5.2 KiB
Rust
150 lines
5.2 KiB
Rust
pub mod audio;
|
|
pub mod bs1770;
|
|
pub mod coco_classes;
|
|
pub mod imagenet;
|
|
pub mod token_output_stream;
|
|
pub mod wav;
|
|
|
|
use candle::utils::{cuda_is_available, metal_is_available};
|
|
use candle::{Device, Result, Tensor};
|
|
|
|
pub fn device(cpu: bool) -> Result<Device> {
|
|
if cpu {
|
|
Ok(Device::Cpu)
|
|
} else if cuda_is_available() {
|
|
Ok(Device::new_cuda(0)?)
|
|
} else if metal_is_available() {
|
|
Ok(Device::new_metal(0)?)
|
|
} else {
|
|
#[cfg(all(target_os = "macos", target_arch = "aarch64"))]
|
|
{
|
|
println!(
|
|
"Running on CPU, to run on GPU(metal), build this example with `--features metal`"
|
|
);
|
|
}
|
|
#[cfg(not(all(target_os = "macos", target_arch = "aarch64")))]
|
|
{
|
|
println!("Running on CPU, to run on GPU, build this example with `--features cuda`");
|
|
}
|
|
Ok(Device::Cpu)
|
|
}
|
|
}
|
|
|
|
pub fn load_image<P: AsRef<std::path::Path>>(
|
|
p: P,
|
|
resize_longest: Option<usize>,
|
|
) -> Result<(Tensor, usize, usize)> {
|
|
let img = image::ImageReader::open(p)?
|
|
.decode()
|
|
.map_err(candle::Error::wrap)?;
|
|
let (initial_h, initial_w) = (img.height() as usize, img.width() as usize);
|
|
let img = match resize_longest {
|
|
None => img,
|
|
Some(resize_longest) => {
|
|
let (height, width) = (img.height(), img.width());
|
|
let resize_longest = resize_longest as u32;
|
|
let (height, width) = if height < width {
|
|
let h = (resize_longest * height) / width;
|
|
(h, resize_longest)
|
|
} else {
|
|
let w = (resize_longest * width) / height;
|
|
(resize_longest, w)
|
|
};
|
|
img.resize_exact(width, height, image::imageops::FilterType::CatmullRom)
|
|
}
|
|
};
|
|
let (height, width) = (img.height() as usize, img.width() as usize);
|
|
let img = img.to_rgb8();
|
|
let data = img.into_raw();
|
|
let data = Tensor::from_vec(data, (height, width, 3), &Device::Cpu)?.permute((2, 0, 1))?;
|
|
Ok((data, initial_h, initial_w))
|
|
}
|
|
|
|
pub fn load_image_and_resize<P: AsRef<std::path::Path>>(
|
|
p: P,
|
|
width: usize,
|
|
height: usize,
|
|
) -> Result<Tensor> {
|
|
let img = image::ImageReader::open(p)?
|
|
.decode()
|
|
.map_err(candle::Error::wrap)?
|
|
.resize_to_fill(
|
|
width as u32,
|
|
height as u32,
|
|
image::imageops::FilterType::Triangle,
|
|
);
|
|
let img = img.to_rgb8();
|
|
let data = img.into_raw();
|
|
Tensor::from_vec(data, (width, height, 3), &Device::Cpu)?.permute((2, 0, 1))
|
|
}
|
|
|
|
/// Saves an image to disk using the image crate, this expects an input with shape
|
|
/// (c, height, width).
|
|
pub fn save_image<P: AsRef<std::path::Path>>(img: &Tensor, p: P) -> Result<()> {
|
|
let p = p.as_ref();
|
|
let (channel, height, width) = img.dims3()?;
|
|
if channel != 3 {
|
|
candle::bail!("save_image expects an input of shape (3, height, width)")
|
|
}
|
|
let img = img.permute((1, 2, 0))?.flatten_all()?;
|
|
let pixels = img.to_vec1::<u8>()?;
|
|
let image: image::ImageBuffer<image::Rgb<u8>, Vec<u8>> =
|
|
match image::ImageBuffer::from_raw(width as u32, height as u32, pixels) {
|
|
Some(image) => image,
|
|
None => candle::bail!("error saving image {p:?}"),
|
|
};
|
|
image.save(p).map_err(candle::Error::wrap)?;
|
|
Ok(())
|
|
}
|
|
|
|
pub fn save_image_resize<P: AsRef<std::path::Path>>(
|
|
img: &Tensor,
|
|
p: P,
|
|
h: usize,
|
|
w: usize,
|
|
) -> Result<()> {
|
|
let p = p.as_ref();
|
|
let (channel, height, width) = img.dims3()?;
|
|
if channel != 3 {
|
|
candle::bail!("save_image expects an input of shape (3, height, width)")
|
|
}
|
|
let img = img.permute((1, 2, 0))?.flatten_all()?;
|
|
let pixels = img.to_vec1::<u8>()?;
|
|
let image: image::ImageBuffer<image::Rgb<u8>, Vec<u8>> =
|
|
match image::ImageBuffer::from_raw(width as u32, height as u32, pixels) {
|
|
Some(image) => image,
|
|
None => candle::bail!("error saving image {p:?}"),
|
|
};
|
|
let image = image::DynamicImage::from(image);
|
|
let image = image.resize_to_fill(w as u32, h as u32, image::imageops::FilterType::CatmullRom);
|
|
image.save(p).map_err(candle::Error::wrap)?;
|
|
Ok(())
|
|
}
|
|
|
|
/// Loads the safetensors files for a model from the hub based on a json index file.
|
|
pub fn hub_load_safetensors(
|
|
repo: &hf_hub::api::sync::ApiRepo,
|
|
json_file: &str,
|
|
) -> Result<Vec<std::path::PathBuf>> {
|
|
let json_file = repo.get(json_file).map_err(candle::Error::wrap)?;
|
|
let json_file = std::fs::File::open(json_file)?;
|
|
let json: serde_json::Value =
|
|
serde_json::from_reader(&json_file).map_err(candle::Error::wrap)?;
|
|
let weight_map = match json.get("weight_map") {
|
|
None => candle::bail!("no weight map in {json_file:?}"),
|
|
Some(serde_json::Value::Object(map)) => map,
|
|
Some(_) => candle::bail!("weight map in {json_file:?} is not a map"),
|
|
};
|
|
let mut safetensors_files = std::collections::HashSet::new();
|
|
for value in weight_map.values() {
|
|
if let Some(file) = value.as_str() {
|
|
safetensors_files.insert(file.to_string());
|
|
}
|
|
}
|
|
let safetensors_files = safetensors_files
|
|
.iter()
|
|
.map(|v| repo.get(v).map_err(candle::Error::wrap))
|
|
.collect::<Result<Vec<_>>>()?;
|
|
Ok(safetensors_files)
|
|
}
|