Files
candle/candle-wasm-examples/whisper/src/model.rs
Laurent Mazare 94aa234dfd Add the kv-cache to the whisper wasm version. (#689)
* Add the kv-cache to the whisper wasm version.

* Improve the handling of special tokens.
2023-08-31 09:37:44 +01:00

418 lines
14 KiB
Rust

// We use anyhow rather than candle errors as it provides better support for getting the backtrace
// back when using RUST_LIB_BACKTRACE=1.
use anyhow::Result;
use candle::{Device, Tensor};
use candle_nn::{Conv1d, Conv1dConfig, Embedding, LayerNorm, Module, VarBuilder};
use serde::Deserialize;
// The names in comments correspond to the original implementation:
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L17
#[derive(Debug, Clone, PartialEq, Deserialize)]
pub struct Config {
pub num_mel_bins: usize, // n_mels
pub max_source_positions: usize, // n_audio_ctx
pub d_model: usize, // n_audio_state
pub encoder_attention_heads: usize, // n_audio_head
pub encoder_layers: usize, // n_audio_layer
pub vocab_size: usize, // n_vocab
pub max_target_positions: usize, // n_text_ctx
// pub n_text_state: usize,
pub decoder_attention_heads: usize, // n_text_head
pub decoder_layers: usize, // n_text_layer
}
impl Config {
pub fn tiny_en() -> Self {
Self {
num_mel_bins: 80,
vocab_size: 51864,
max_source_positions: 1500,
d_model: 384,
encoder_attention_heads: 6,
encoder_layers: 4,
max_target_positions: 448,
// n_text_state: 384,
decoder_attention_heads: 6,
decoder_layers: 4,
}
}
}
// The struct below is duplicated from candle_nn::Linear so that it's easier to add some wasm
// specific monitoring.
#[derive(Debug)]
struct Linear {
weight: Tensor,
bias: Option<Tensor>,
}
impl Linear {
fn new(weight: Tensor, bias: Option<Tensor>) -> Self {
Self { weight, bias }
}
fn forward(&self, x: &Tensor) -> candle::Result<Tensor> {
let _timer = crate::Timer::new("Linear::forward");
let w = match x.dims() {
&[bsize, _, _] => self.weight.broadcast_left(bsize)?.t()?,
_ => self.weight.t()?,
};
let x = {
let _timer = crate::Timer::new("Linear::matmul");
x.matmul(&w)?
};
match &self.bias {
None => Ok(x),
Some(bias) => x.broadcast_add(bias),
}
}
}
fn embedding(vocab_size: usize, hidden_size: usize, vb: VarBuilder) -> Result<Embedding> {
let embeddings = vb.get((vocab_size, hidden_size), "weight")?;
Ok(Embedding::new(embeddings, hidden_size))
}
fn linear(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
let weight = vb.get((size2, size1), "weight")?;
let bias = vb.get(size2, "bias")?;
Ok(Linear::new(weight, Some(bias)))
}
fn linear_no_bias(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
let weight = vb.get((size2, size1), "weight")?;
Ok(Linear::new(weight, None))
}
fn conv1d(
in_channels: usize,
out_channels: usize,
kernel_size: usize,
config: Conv1dConfig,
vb: VarBuilder,
) -> Result<Conv1d> {
let weight = vb.get((out_channels, in_channels, kernel_size), "weight")?;
let bias = vb.get(out_channels, "bias")?;
Ok(Conv1d::new(weight, Some(bias), config))
}
fn layer_norm(size: usize, vb: VarBuilder) -> Result<LayerNorm> {
let weight = vb.get(size, "weight")?;
let bias = vb.get(size, "bias")?;
Ok(LayerNorm::new(weight, bias, 1e-5))
}
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L62
struct MultiHeadAttention {
query: Linear,
key: Linear,
value: Linear,
out: Linear,
n_head: usize,
kv_cache: Option<(Tensor, Tensor)>,
}
impl MultiHeadAttention {
fn load(n_state: usize, n_head: usize, vb: VarBuilder) -> Result<Self> {
let query = linear(n_state, n_state, vb.pp("q_proj"))?;
let value = linear(n_state, n_state, vb.pp("v_proj"))?;
let key = linear_no_bias(n_state, n_state, vb.pp("k_proj"))?;
let out = linear(n_state, n_state, vb.pp("out_proj"))?;
Ok(Self {
query,
key,
value,
out,
n_head,
kv_cache: None,
})
}
fn forward(
&mut self,
x: &Tensor,
xa: Option<&Tensor>,
mask: Option<&Tensor>,
flush_cache: bool,
) -> Result<Tensor> {
let _timer = crate::Timer::new("MultiHeadAttention::forward");
let q = self.query.forward(x)?;
let (k, v) = match xa {
None => {
let k = self.key.forward(x)?;
let v = self.value.forward(x)?;
(k, v)
}
Some(x) => {
if flush_cache {
self.kv_cache = None;
}
if let Some((k, v)) = &self.kv_cache {
(k.clone(), v.clone())
} else {
let k = self.key.forward(x)?;
let v = self.value.forward(x)?;
self.kv_cache = Some((k.clone(), v.clone()));
(k, v)
}
}
};
let wv = self.qkv_attention(&q, &k, &v, mask)?;
let out = self.out.forward(&wv)?;
Ok(out)
}
fn reshape_head(&self, x: &Tensor) -> Result<Tensor> {
let (n_batch, n_ctx, n_state) = x.dims3()?;
let target_dims = &[n_batch, n_ctx, self.n_head, n_state / self.n_head];
Ok(x.reshape(target_dims)?.transpose(1, 2)?)
}
fn qkv_attention(
&self,
q: &Tensor,
k: &Tensor,
v: &Tensor,
mask: Option<&Tensor>,
) -> Result<Tensor> {
let (_, n_ctx, n_state) = q.dims3()?;
let scale = ((n_state / self.n_head) as f64).powf(-0.25);
let q = (self.reshape_head(q)? * scale)?;
let k = (self.reshape_head(k)?.transpose(2, 3)? * scale)?;
let v = self.reshape_head(v)?.contiguous()?;
let mut qk = {
let _timer = crate::Timer::new("qk::matmul");
q.matmul(&k)?
};
if let Some(mask) = mask {
let mask = mask.narrow(0, 0, n_ctx)?.narrow(1, 0, n_ctx)?;
qk = qk.broadcast_add(&mask)?
}
let w = {
let _timer = crate::Timer::new("qk::softmax");
candle_nn::ops::softmax(&qk, candle::D::Minus1)?
};
let wv = {
let _timer = crate::Timer::new("wv::matmul");
w.matmul(&v)?.transpose(1, 2)?.flatten_from(2)?
};
Ok(wv)
}
}
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L111
struct ResidualAttentionBlock {
attn: MultiHeadAttention,
attn_ln: LayerNorm,
cross_attn: Option<(MultiHeadAttention, LayerNorm)>,
mlp_linear1: Linear,
mlp_linear2: Linear,
mlp_ln: LayerNorm,
}
impl ResidualAttentionBlock {
fn load(n_state: usize, n_head: usize, ca: bool, vb: VarBuilder) -> Result<Self> {
let attn = MultiHeadAttention::load(n_state, n_head, vb.pp("self_attn"))?;
let attn_ln = layer_norm(n_state, vb.pp("self_attn_layer_norm"))?;
let cross_attn = if ca {
let cross_attn = MultiHeadAttention::load(n_state, n_head, vb.pp("encoder_attn"))?;
let cross_attn_ln = layer_norm(n_state, vb.pp("encoder_attn_layer_norm"))?;
Some((cross_attn, cross_attn_ln))
} else {
None
};
let n_mlp = n_state * 4;
let mlp_linear1 = linear(n_state, n_mlp, vb.pp("fc1"))?;
let mlp_linear2 = linear(n_mlp, n_state, vb.pp("fc2"))?;
let mlp_ln = layer_norm(n_state, vb.pp("final_layer_norm"))?;
Ok(Self {
attn,
attn_ln,
cross_attn,
mlp_linear1,
mlp_linear2,
mlp_ln,
})
}
fn forward(
&mut self,
x: &Tensor,
xa: Option<&Tensor>,
mask: Option<&Tensor>,
flush_kv_cache: bool,
) -> Result<Tensor> {
let _timer = crate::Timer::new("ResidualAttentionBlock::forward");
let attn = self
.attn
.forward(&self.attn_ln.forward(x)?, None, mask, flush_kv_cache)?;
let mut x = (x + attn)?;
if let Some((attn, ln)) = &mut self.cross_attn {
x = (&x + attn.forward(&ln.forward(&x)?, xa, None, flush_kv_cache)?)?;
}
let mlp = self.mlp_linear2.forward(
&self
.mlp_linear1
.forward(&self.mlp_ln.forward(&x)?)?
.gelu()?,
)?;
Ok((x + mlp)?)
}
}
fn sinusoids(length: usize, channels: usize) -> Result<Tensor> {
let max_timescale = 10000f32;
let log_timescale_increment = max_timescale.ln() / (channels / 2 - 1) as f32;
let inv_timescales: Vec<_> = (0..channels / 2)
.map(|i| (i as f32 * (-log_timescale_increment)).exp())
.collect();
let inv_timescales = Tensor::new(inv_timescales.as_slice(), &Device::Cpu)?.unsqueeze(0)?;
let arange = Tensor::arange(0, length as u32, &Device::Cpu)?
.to_dtype(candle::DType::F32)?
.unsqueeze(1)?;
let sh = (length, channels / 2);
let scaled_time = (arange.broadcast_as(sh)? * inv_timescales.broadcast_as(sh)?)?;
let sincos = Tensor::cat(&[scaled_time.sin()?, scaled_time.cos()?], 1)?;
Ok(sincos)
}
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L143
pub struct AudioEncoder {
conv1: Conv1d,
conv2: Conv1d,
positional_embedding: Tensor,
blocks: Vec<ResidualAttentionBlock>,
ln_post: LayerNorm,
}
impl AudioEncoder {
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
let n_state = cfg.d_model;
let n_head = cfg.encoder_attention_heads;
let n_ctx = cfg.max_source_positions;
let cfg1 = Conv1dConfig {
padding: 1,
stride: 1,
groups: 1,
dilation: 1,
};
let cfg2 = Conv1dConfig {
padding: 1,
stride: 2,
groups: 1,
dilation: 1,
};
let conv1 = conv1d(cfg.num_mel_bins, n_state, 3, cfg1, vb.pp("conv1"))?;
let conv2 = conv1d(n_state, n_state, 3, cfg2, vb.pp("conv2"))?;
let positional_embedding = sinusoids(n_ctx, n_state)?.to_device(vb.device())?;
let blocks = (0..cfg.encoder_layers)
.map(|i| {
ResidualAttentionBlock::load(n_state, n_head, false, vb.pp(&format!("layers.{i}")))
})
.collect::<Result<Vec<_>>>()?;
let ln_post = layer_norm(n_state, vb.pp("layer_norm"))?;
Ok(Self {
conv1,
conv2,
positional_embedding,
blocks,
ln_post,
})
}
pub fn forward(&mut self, x: &Tensor, flush_kv_cache: bool) -> Result<Tensor> {
let _timer = crate::Timer::new("AudioEncoder::forward");
let x = {
let _timer = crate::Timer::new("conv1::forward");
self.conv1.forward(x)?.gelu()?
};
let x = {
let _timer = crate::Timer::new("conv2::forward");
self.conv2.forward(&x)?.gelu()?
};
let x = x.transpose(1, 2)?;
let (_bsize, seq_len, _hidden) = x.dims3()?;
let positional_embedding = self.positional_embedding.narrow(0, 0, seq_len)?;
let mut x = x.broadcast_add(&positional_embedding)?;
for block in self.blocks.iter_mut() {
x = block.forward(&x, None, None, flush_kv_cache)?
}
let x = self.ln_post.forward(&x)?;
Ok(x)
}
}
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L176
pub struct TextDecoder {
token_embedding: Embedding,
positional_embedding: Tensor,
blocks: Vec<ResidualAttentionBlock>,
ln: LayerNorm,
mask: Tensor,
}
impl TextDecoder {
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
let _timer = crate::Timer::new("TextDecoder::forward");
let n_state = cfg.d_model;
let n_head = cfg.decoder_attention_heads;
let n_ctx = cfg.max_target_positions;
let token_embedding = embedding(cfg.vocab_size, n_state, vb.pp("embed_tokens"))?;
let positional_embedding = vb.get((n_ctx, n_state), "embed_positions.weight")?;
let blocks = (0..cfg.decoder_layers)
.map(|i| {
ResidualAttentionBlock::load(n_state, n_head, true, vb.pp(&format!("layers.{i}")))
})
.collect::<Result<Vec<_>>>()?;
let ln = layer_norm(n_state, vb.pp("layer_norm"))?;
let mask: Vec<_> = (0..n_ctx)
.flat_map(|i| (0..n_ctx).map(move |j| if j > i { f32::NEG_INFINITY } else { 0f32 }))
.collect();
let mask = Tensor::from_vec(mask, (n_ctx, n_ctx), vb.device())?;
Ok(Self {
token_embedding,
positional_embedding,
blocks,
ln,
mask,
})
}
pub fn forward(&mut self, x: &Tensor, xa: &Tensor, flush_kv_cache: bool) -> Result<Tensor> {
let x_dims = x.dims();
let last = x_dims[x_dims.len() - 1];
let token_embedding = self.token_embedding.forward(x)?;
let positional_embedding = self.positional_embedding.narrow(0, 0, last)?;
let mut x = token_embedding.broadcast_add(&positional_embedding)?;
for block in self.blocks.iter_mut() {
x = block.forward(&x, Some(xa), Some(&self.mask), flush_kv_cache)?;
}
let x = self.ln.forward(&x)?;
let w = self
.token_embedding
.embeddings()
.broadcast_left(x_dims[0])?;
let logits = x.matmul(&w.t()?)?;
Ok(logits)
}
}
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L221
pub struct Whisper {
pub encoder: AudioEncoder,
pub decoder: TextDecoder,
pub config: Config,
}
impl Whisper {
pub fn load(vb: &VarBuilder, config: Config) -> Result<Self> {
let encoder = AudioEncoder::load(vb.pp("model.encoder"), &config)?;
let decoder = TextDecoder::load(vb.pp("model.decoder"), &config)?;
Ok(Self {
encoder,
decoder,
config,
})
}
}