mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00
170 lines
6.2 KiB
Rust
170 lines
6.2 KiB
Rust
use anyhow::Result;
|
|
use byteorder::{LittleEndian, ReadBytesExt};
|
|
use candle::{DType, Device, IndexOp, Shape, Tensor};
|
|
use candle_nn::VarBuilder;
|
|
|
|
use crate::model::Config;
|
|
|
|
pub struct TransformerWeights {
|
|
// token embedding table
|
|
token_embedding_table: Tensor, // (vocab_size, dim)
|
|
// weights for rmsnorms
|
|
rms_att_weight: Tensor, // (layer, dim) rmsnorm weights
|
|
rms_ffn_weight: Tensor, // (layer, dim)
|
|
// weights for matmuls
|
|
wq: Tensor, // (layer, dim, dim)
|
|
wk: Tensor, // (layer, dim, dim)
|
|
wv: Tensor, // (layer, dim, dim)
|
|
wo: Tensor, // (layer, dim, dim)
|
|
// weights for ffn
|
|
w1: Tensor, // (layer, hidden_dim, dim)
|
|
w2: Tensor, // (layer, dim, hidden_dim)
|
|
w3: Tensor, // (layer, hidden_dim, dim)
|
|
// final rmsnorm
|
|
rms_final_weight: Tensor, // (dim,)
|
|
// freq_cis for RoPE relatively positional embeddings
|
|
freq_cis_real: Tensor, // (seq_len, head_size/2)
|
|
freq_cis_imag: Tensor, // (seq_len, head_size/2)
|
|
}
|
|
|
|
fn read_i32<R: std::io::Read>(r: &mut R) -> Result<i32> {
|
|
let mut buf = [0u8; 4];
|
|
r.read_exact(&mut buf)?;
|
|
Ok(i32::from_le_bytes(buf))
|
|
}
|
|
|
|
fn read_tensor<R: std::io::Read, S: Into<Shape>>(
|
|
r: &mut R,
|
|
shape: S,
|
|
dev: &Device,
|
|
) -> Result<Tensor> {
|
|
let shape = shape.into();
|
|
let mut data_t = vec![0f32; shape.elem_count()];
|
|
r.read_f32_into::<LittleEndian>(&mut data_t)?;
|
|
let tensor = Tensor::from_vec(data_t, shape, dev)?;
|
|
Ok(tensor)
|
|
}
|
|
|
|
impl Config {
|
|
pub fn from_reader<R: std::io::Read>(r: &mut R) -> Result<Self> {
|
|
let dim = read_i32(r)? as usize;
|
|
let hidden_dim = read_i32(r)? as usize;
|
|
let n_layers = read_i32(r)? as usize;
|
|
let n_heads = read_i32(r)? as usize;
|
|
let n_kv_heads = read_i32(r)? as usize;
|
|
let vocab_size = read_i32(r)? as usize;
|
|
let seq_len = read_i32(r)? as usize;
|
|
Ok(Self {
|
|
dim,
|
|
hidden_dim,
|
|
n_layers,
|
|
n_heads,
|
|
n_kv_heads,
|
|
vocab_size,
|
|
seq_len,
|
|
norm_eps: 1e-5,
|
|
})
|
|
}
|
|
|
|
pub fn head_size(&self) -> usize {
|
|
self.dim / self.n_heads
|
|
}
|
|
}
|
|
|
|
impl TransformerWeights {
|
|
pub fn from_reader<R: std::io::Read>(r: &mut R, c: &Config, dev: &Device) -> Result<Self> {
|
|
let token_embedding_table = read_tensor(r, (c.vocab_size, c.dim), dev)?;
|
|
let rms_att_weight = read_tensor(r, (c.n_layers, c.dim), dev)?;
|
|
let wq = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
|
let wk = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
|
let wv = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
|
let wo = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
|
let rms_ffn_weight = read_tensor(r, (c.n_layers, c.dim), dev)?;
|
|
let w1 = read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
|
|
let w2 = read_tensor(r, (c.n_layers, c.dim, c.hidden_dim), dev)?;
|
|
let w3 = read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
|
|
let rms_final_weight = read_tensor(r, c.dim, dev)?;
|
|
let head_size = c.head_size();
|
|
let freq_cis_real = read_tensor(r, (c.seq_len, head_size / 2), dev)?;
|
|
let freq_cis_imag = read_tensor(r, (c.seq_len, head_size / 2), dev)?;
|
|
Ok(Self {
|
|
token_embedding_table,
|
|
rms_att_weight,
|
|
wq,
|
|
wk,
|
|
wv,
|
|
wo,
|
|
rms_ffn_weight,
|
|
w1,
|
|
w2,
|
|
w3,
|
|
rms_final_weight,
|
|
freq_cis_real,
|
|
freq_cis_imag,
|
|
})
|
|
}
|
|
|
|
pub fn var_builder(&self, cfg: &Config, device: &Device) -> Result<VarBuilder<'static>> {
|
|
// TODO: As of 2023-08-04, gemm is slower than expected when multiplying a matrix of
|
|
// size (1, k) with the transpose of a matrix of size (k, n) as it ends up transposing the
|
|
// second matrix back. We detect this case here and as a temporary hack make the weight
|
|
// matrix column major rather than row major. This ends up speeding up text generation from
|
|
// 120 token/s to 220 token/s on a Ryzen 2600X.
|
|
let tr = device.is_cpu() && !candle::utils::has_mkl();
|
|
let tr = false;
|
|
let tr = |x: Tensor| if tr { x.t()?.contiguous()?.t() } else { Ok(x) };
|
|
let mut ws = std::collections::HashMap::new();
|
|
let mut insert = |name: &str, t: Tensor| {
|
|
ws.insert(name.to_string(), t);
|
|
};
|
|
insert("rot.freq_cis_real", self.freq_cis_real.clone());
|
|
insert("rot.freq_cis_imag", self.freq_cis_imag.clone());
|
|
insert(
|
|
"model.embed_tokens.weight",
|
|
self.token_embedding_table.clone(),
|
|
);
|
|
insert("lm_head.weight", tr(self.token_embedding_table.clone())?);
|
|
insert("model.norm.weight", self.rms_final_weight.clone());
|
|
for layer in 0..cfg.n_layers {
|
|
ws.insert(
|
|
format!("model.layers.{layer}.self_attn.q_proj.weight"),
|
|
tr(self.wq.i(layer)?)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.self_attn.k_proj.weight"),
|
|
tr(self.wk.i(layer)?)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.self_attn.v_proj.weight"),
|
|
tr(self.wv.i(layer)?)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.self_attn.o_proj.weight"),
|
|
tr(self.wo.i(layer)?)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.mlp.gate_proj.weight"),
|
|
tr(self.w1.i(layer)?)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.mlp.down_proj.weight"),
|
|
tr(self.w2.i(layer)?)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.mlp.up_proj.weight"),
|
|
tr(self.w3.i(layer)?)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.input_layernorm.weight"),
|
|
self.rms_att_weight.i(layer)?,
|
|
);
|
|
ws.insert(
|
|
format!("model.layers.{layer}.post_attention_layernorm.weight"),
|
|
self.rms_ffn_weight.i(layer)?,
|
|
);
|
|
}
|
|
let vb = VarBuilder::from_tensors(ws, DType::F32, device);
|
|
Ok(vb)
|
|
}
|
|
}
|