mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00

* add `q2k` vec-dot * `q3k` vec-dot + quantization bugfix * `q4k` vec-dot * `q5k` vec-dot * Validate against GGML unit test results. * Remove some more `transmutes`
619 lines
21 KiB
Rust
619 lines
21 KiB
Rust
use candle_core::{
|
|
quantized::{self, GgmlDType},
|
|
Device, Result, Tensor,
|
|
};
|
|
use quantized::{k_quants, GgmlType};
|
|
mod test_utils;
|
|
use rand::prelude::*;
|
|
use test_utils::to_vec2_round;
|
|
|
|
const GGML_TEST_SIZE: usize = 32 * 128;
|
|
|
|
const GGML_MAX_QUANTIZATION_TOTAL_ERROR: f32 = 0.002;
|
|
const GGML_MAX_QUANTIZATION_TOTAL_ERROR_2BITS: f32 = 0.0075;
|
|
const GGML_MAX_QUANTIZATION_TOTAL_ERROR_3BITS: f32 = 0.0040;
|
|
const GGML_MAX_DOT_PRODUCT_ERROR: f32 = 0.02;
|
|
|
|
#[test]
|
|
fn quantized_matmul() -> Result<()> {
|
|
let cpu = &Device::Cpu;
|
|
let (m, k, n) = (3, 64, 4);
|
|
let lhs = (0..(m * k)).map(|v| v as f32).collect::<Vec<_>>();
|
|
let tensor_lhs = Tensor::from_slice(&lhs, (m, k), cpu)?;
|
|
let mut dst = vec![42.; 3 * 4];
|
|
let mut rhs_t = vec![k_quants::BlockQ4_0::zeros(); 8];
|
|
let rhs = (0..(k * n)).map(|v| v as f32).collect::<Vec<_>>();
|
|
let tensor_rhs = Tensor::from_slice(&rhs, (n, k), cpu)?.t()?;
|
|
k_quants::BlockQ4_0::from_float(&rhs, &mut rhs_t)?;
|
|
k_quants::matmul((m, k, n), &lhs, &rhs_t, &mut dst)?;
|
|
assert_eq!(
|
|
dst.iter().map(|x| x.round()).collect::<Vec<_>>(),
|
|
&[
|
|
85120.0, 214562.0, 345455.0, 474748.0, 213475.0, 604465.0, 1000686.0, 1388317.0,
|
|
341876.0, 994283.0, 1655709.0, 2301518.0
|
|
]
|
|
);
|
|
let mm = tensor_lhs.matmul(&tensor_rhs)?;
|
|
assert_eq!(
|
|
mm.to_vec2::<f32>()?,
|
|
&[
|
|
[85344.0, 214368.0, 343392.0, 472416.0],
|
|
[214368.0, 605536.0, 996704.0, 1387872.0],
|
|
[343392.0, 996704.0, 1650016.0, 2303328.0]
|
|
]
|
|
);
|
|
|
|
let qtensor = quantized::QTensor::new(rhs_t, (4, 64))?;
|
|
let matmul = quantized::QMatMul::from_qtensor(qtensor);
|
|
let res = matmul.forward(&tensor_lhs)?;
|
|
assert_eq!(
|
|
to_vec2_round(&res, 0)?,
|
|
&[
|
|
[85120.0, 214562.0, 345455.0, 474748.0],
|
|
[213475.0, 604465.0, 1000686.0, 1388317.0],
|
|
[341876.0, 994283.0, 1655709.0, 2301518.0]
|
|
]
|
|
);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn quantized_matmul_neg() -> Result<()> {
|
|
let cpu = &Device::Cpu;
|
|
let (m, k, n) = (3, 64, 4);
|
|
let lhs = (0..(m * k))
|
|
.map(|v| v as f32 - (m * k) as f32 / 2.0)
|
|
.collect::<Vec<_>>();
|
|
let tensor_lhs = Tensor::from_slice(&lhs, (m, k), cpu)?;
|
|
let mut dst = vec![42.; 3 * 4];
|
|
let mut rhs_t = vec![k_quants::BlockQ4_0::zeros(); 8];
|
|
let rhs = (0..k * n)
|
|
.map(|v| v as f32 - (k * n) as f32 / 3.0)
|
|
.collect::<Vec<_>>();
|
|
let tensor_rhs = Tensor::from_slice(&rhs, (n, k), cpu)?.t()?;
|
|
k_quants::BlockQ4_0::from_float(&rhs, &mut rhs_t)?;
|
|
k_quants::matmul((m, k, n), &lhs, &rhs_t, &mut dst)?;
|
|
assert_eq!(
|
|
dst.iter().map(|x| x.round()).collect::<Vec<_>>(),
|
|
&[
|
|
243524.0, -19596.0, -285051.0, -549815.0, 23777.0, 21651.0, 19398.0, 18367.0,
|
|
-196472.0, 63012.0, 324585.0, 587902.0
|
|
]
|
|
);
|
|
let mm = tensor_lhs.matmul(&tensor_rhs)?;
|
|
assert_eq!(
|
|
to_vec2_round(&mm, 0)?,
|
|
&[
|
|
[244064.0, -20128.0, -284320.0, -548512.0],
|
|
[23563.0, 21515.0, 19467.0, 17419.0],
|
|
[-196939.0, 63157.0, 323253.0, 583349.0]
|
|
]
|
|
);
|
|
|
|
let qtensor = quantized::QTensor::new(rhs_t, (4, 64))?;
|
|
let matmul = quantized::QMatMul::from_qtensor(qtensor);
|
|
let res = matmul.forward(&tensor_lhs)?;
|
|
assert_eq!(
|
|
to_vec2_round(&res, 0)?,
|
|
&[
|
|
[243524.0, -19596.0, -285051.0, -549815.0],
|
|
[23777.0, 21651.0, 19398.0, 18367.0],
|
|
[-196472.0, 63012.0, 324585.0, 587902.0]
|
|
]
|
|
);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn quantize_q4_0() -> Result<()> {
|
|
use k_quants::BlockQ4_0;
|
|
|
|
let src = (0..32 * 4).map(|v| v as f32).collect::<Vec<_>>();
|
|
let mut dst = vec![0f32; 32 * 4];
|
|
let mut quant = vec![BlockQ4_0::zeros(); 4];
|
|
BlockQ4_0::from_float(&src, &mut quant)?;
|
|
BlockQ4_0::to_float(&quant, dst.as_mut_slice())?;
|
|
assert_eq!(
|
|
dst,
|
|
&[
|
|
-0.0, -0.0, 3.875, 3.875, 3.875, 3.875, 7.75, 7.75, 7.75, 7.75, 11.625, 11.625, 11.625,
|
|
11.625, 15.5, 15.5, 15.5, 15.5, 19.375, 19.375, 19.375, 19.375, 23.25, 23.25, 23.25,
|
|
23.25, 27.125, 27.125, 27.125, 27.125, 31.0, 31.0, 31.5, 31.5, 31.5, 31.5, 39.375,
|
|
39.375, 39.375, 39.375, 39.375, 39.375, 39.375, 39.375, 47.25, 47.25, 47.25, 47.25,
|
|
47.25, 47.25, 47.25, 47.25, 55.125, 55.125, 55.125, 55.125, 55.125, 55.125, 55.125,
|
|
55.125, 63.0, 63.0, 63.0, 63.0, 59.375, 59.375, 71.25, 71.25, 71.25, 71.25, 71.25,
|
|
71.25, 71.25, 71.25, 71.25, 71.25, 71.25, 71.25, 83.125, 83.125, 83.125, 83.125,
|
|
83.125, 83.125, 83.125, 83.125, 83.125, 83.125, 83.125, 83.125, 95.0, 95.0, 95.0, 95.0,
|
|
95.0, 95.0, 95.25, 95.25, 95.25, 95.25, 95.25, 95.25, 95.25, 95.25, 111.125, 111.125,
|
|
111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125,
|
|
111.125, 111.125, 111.125, 111.125, 111.125, 127.0, 127.0, 127.0, 127.0, 127.0, 127.0,
|
|
127.0, 127.0
|
|
]
|
|
);
|
|
|
|
//mirrored GGML unit test
|
|
ggml_quantization_error_test::<BlockQ4_0>(GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Generates a small test vector ranging from -`bound` to `bound` with `size` steps
|
|
fn get_test_vector(bound: f32, size: usize) -> (Vec<f32>, Vec<f32>) {
|
|
assert!(
|
|
size % crate::quantized::k_quants::QK_K == 0,
|
|
"size must be a multiple of {}",
|
|
crate::quantized::k_quants::QK_K
|
|
);
|
|
|
|
let src = (0..size)
|
|
.map(|v| (v as f32 - size as f32 / 2.) * bound / (size as f32 / 2.))
|
|
.collect::<Vec<_>>();
|
|
|
|
let dst = vec![0f32; size];
|
|
assert_eq!([src[0], src[size / 2]], [-bound, 0.0]);
|
|
(src, dst)
|
|
}
|
|
|
|
/// Round a vector
|
|
fn round_vector(values: &[f32]) -> Vec<f32> {
|
|
values
|
|
.iter()
|
|
.map(|x| (1000. * x).round() / 1000.)
|
|
.collect::<Vec<_>>()
|
|
}
|
|
|
|
fn compare_with_error(values: &[f32], expected: &[f32], tolerance: f32) {
|
|
for (i, (value, expected_value)) in values.iter().zip(expected.iter()).enumerate() {
|
|
let difference = (value - expected_value).abs();
|
|
|
|
assert!(
|
|
difference < tolerance,
|
|
"Error at index {}: value = {}, expected = {}. Difference = {} exceeds tolerance = {}.",
|
|
i,
|
|
value,
|
|
expected_value,
|
|
difference,
|
|
tolerance
|
|
);
|
|
}
|
|
}
|
|
|
|
/// Creates a vector simillarly to the one used in GGML unit tests: https://github.com/ggerganov/llama.cpp/blob/master/tests/test-quantize-fns.cpp#L26-L30
|
|
fn create_ggml_like_vector(offset: f32) -> Vec<f32> {
|
|
(0..GGML_TEST_SIZE)
|
|
.map(|i| 0.1 + 2.0 * (i as f32 + offset).cos())
|
|
.collect()
|
|
}
|
|
|
|
/// Calculates the root mean square error between two vectors
|
|
fn calculate_rmse(a: &[f32], b: &[f32]) -> f32 {
|
|
assert_eq!(a.len(), b.len());
|
|
let sum = a
|
|
.iter()
|
|
.zip(b)
|
|
.map(|(a, b)| (a - b).powi(2))
|
|
.sum::<f32>()
|
|
.sqrt();
|
|
sum / a.len() as f32
|
|
}
|
|
|
|
/// Mirrores the GGML quanitzation unit test: https://github.com/ggerganov/llama.cpp/blob/master/tests/test-quantize-fns.cpp#L43-L50
|
|
fn ggml_quantization_error_test<T: GgmlType>(max_error: f32) -> Result<()> {
|
|
let src = create_ggml_like_vector(0.0);
|
|
let mut dst = vec![0.0; GGML_TEST_SIZE];
|
|
let _quant = quantize_roundtrip::<T>(src.as_slice(), dst.as_mut_slice())?;
|
|
let error = calculate_rmse(src.as_slice(), dst.as_slice());
|
|
if error > max_error {
|
|
candle_core::bail!(
|
|
"Quantization error {} exceeds max error {}",
|
|
error,
|
|
max_error
|
|
);
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn quantize_roundtrip<T: GgmlType>(src: &[f32], dst: &mut [f32]) -> Result<Vec<T>> {
|
|
let mut quant = vec![T::zeros(); src.len() / T::BLCK_SIZE];
|
|
T::from_float(src, &mut quant)?;
|
|
T::to_float(&quant, dst)?;
|
|
Ok(quant)
|
|
}
|
|
|
|
#[test]
|
|
fn quantize_q2k() -> Result<()> {
|
|
use k_quants::BlockQ2K;
|
|
|
|
let (src, mut dst) = get_test_vector(0.5, 1024);
|
|
let _quant = quantize_roundtrip::<BlockQ2K>(src.as_slice(), dst.as_mut_slice())?;
|
|
compare_with_error(dst.as_slice(), src.as_slice(), 0.1);
|
|
|
|
// Test some specific values
|
|
assert_eq!(
|
|
[src[0], src[128], src[256], src[512], src[800], src[1023]],
|
|
[-0.5, -0.375, -0.25, 0.0, 0.28125, 0.49902344]
|
|
);
|
|
let dst = round_vector(&dst);
|
|
assert_eq!(
|
|
[dst[0], dst[128], dst[256], dst[512], dst[800], dst[1023]],
|
|
[-0.499, -0.366, -0.249, 0.0, 0.295, 0.492]
|
|
);
|
|
|
|
let (src_big, mut dst_big) = get_test_vector(128.0, 1024);
|
|
let _quant_big = quantize_roundtrip::<BlockQ2K>(src_big.as_slice(), dst_big.as_mut_slice())?;
|
|
compare_with_error(dst_big.as_slice(), src_big.as_slice(), 6.0);
|
|
|
|
//mirrored GGML unit test
|
|
ggml_quantization_error_test::<BlockQ2K>(GGML_MAX_QUANTIZATION_TOTAL_ERROR_2BITS)?;
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn quantize_q3k() -> Result<()> {
|
|
use k_quants::BlockQ3K;
|
|
|
|
let (src, mut dst) = get_test_vector(0.5, 1024);
|
|
let _quant = quantize_roundtrip::<BlockQ3K>(src.as_slice(), dst.as_mut_slice())?;
|
|
compare_with_error(dst.as_slice(), src.as_slice(), 0.03);
|
|
|
|
// Test some specific values
|
|
assert_eq!(
|
|
[src[0], src[128], src[256], src[512], src[800], src[1023]],
|
|
[-0.5, -0.375, -0.25, 0.0, 0.28125, 0.49902344]
|
|
);
|
|
let dst = round_vector(&dst);
|
|
assert_eq!(
|
|
[dst[0], dst[128], dst[256], dst[512], dst[800], dst[1023]],
|
|
[-0.493, -0.37, -0.243, -0.0, 0.292, 0.492]
|
|
);
|
|
|
|
let (src_big, mut dst_big) = get_test_vector(128.0, 1024);
|
|
let _quant_big = quantize_roundtrip::<BlockQ3K>(src_big.as_slice(), dst_big.as_mut_slice())?;
|
|
compare_with_error(dst_big.as_slice(), src_big.as_slice(), 3.5);
|
|
|
|
//mirrored GGML unit test
|
|
ggml_quantization_error_test::<BlockQ3K>(GGML_MAX_QUANTIZATION_TOTAL_ERROR_3BITS)?;
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn quantize_q4k() -> Result<()> {
|
|
use k_quants::BlockQ4K;
|
|
|
|
let (src, mut dst) = get_test_vector(0.5, 1024);
|
|
let _quant = quantize_roundtrip::<BlockQ4K>(src.as_slice(), dst.as_mut_slice())?;
|
|
compare_with_error(dst.as_slice(), src.as_slice(), 0.017);
|
|
|
|
// Test some specific values
|
|
assert_eq!(
|
|
[src[0], src[128], src[256], src[512], src[800], src[1023]],
|
|
[-0.5, -0.375, -0.25, 0.0, 0.28125, 0.49902344]
|
|
);
|
|
let dst = round_vector(&dst);
|
|
assert_eq!(
|
|
[dst[0], dst[128], dst[256], dst[512], dst[800], dst[1023]],
|
|
[-0.5, -0.373, -0.25, 0.0, 0.288, 0.498]
|
|
);
|
|
|
|
let (src_big, mut dst_big) = get_test_vector(128.0, 1024);
|
|
let _quant_big = quantize_roundtrip::<BlockQ4K>(src_big.as_slice(), dst_big.as_mut_slice())?;
|
|
compare_with_error(dst_big.as_slice(), src_big.as_slice(), 4.5);
|
|
|
|
//mirrored GGML unit test
|
|
ggml_quantization_error_test::<BlockQ4K>(GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn quantize_q5k() -> Result<()> {
|
|
use k_quants::BlockQ5K;
|
|
|
|
let (src, mut dst) = get_test_vector(0.5, 1024);
|
|
let _quant = quantize_roundtrip::<BlockQ5K>(src.as_slice(), dst.as_mut_slice())?;
|
|
compare_with_error(dst.as_slice(), src.as_slice(), 0.008);
|
|
|
|
// Test some specific values
|
|
assert_eq!(
|
|
[src[0], src[128], src[256], src[512], src[800], src[1023]],
|
|
[-0.5, -0.375, -0.25, 0.0, 0.28125, 0.49902344]
|
|
);
|
|
let dst = round_vector(&dst);
|
|
assert_eq!(
|
|
[dst[0], dst[128], dst[256], dst[512], dst[800], dst[1023]],
|
|
[-0.499, -0.372, -0.249, 0.001, 0.279, 0.499]
|
|
);
|
|
|
|
let (src_big, mut dst_big) = get_test_vector(128.0, 1024);
|
|
let _quant_big = quantize_roundtrip::<BlockQ5K>(src_big.as_slice(), dst_big.as_mut_slice())?;
|
|
compare_with_error(dst_big.as_slice(), src_big.as_slice(), 2.5);
|
|
|
|
//mirrored GGML unit test
|
|
ggml_quantization_error_test::<BlockQ5K>(GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn quantize_q6k() -> Result<()> {
|
|
use k_quants::BlockQ6K;
|
|
|
|
let (src, mut dst) = get_test_vector(0.5, 1024);
|
|
let _quant = quantize_roundtrip::<BlockQ6K>(src.as_slice(), dst.as_mut_slice())?;
|
|
compare_with_error(dst.as_slice(), src.as_slice(), 0.008);
|
|
|
|
// Test some specific values
|
|
assert_eq!(
|
|
[src[0], src[128], src[256], src[512], src[800], src[1023]],
|
|
[-0.5, -0.375, -0.25, 0.0, 0.28125, 0.49902344]
|
|
);
|
|
let dst = round_vector(&dst);
|
|
assert_eq!(
|
|
[dst[0], dst[128], dst[256], dst[512], dst[800], dst[1023]],
|
|
[-0.497, -0.372, -0.25, -0.0, 0.284, 0.5]
|
|
);
|
|
|
|
let (src_big, mut dst_big) = get_test_vector(128.0, 1024);
|
|
let _quant_big = quantize_roundtrip::<BlockQ6K>(src_big.as_slice(), dst_big.as_mut_slice())?;
|
|
compare_with_error(dst_big.as_slice(), src_big.as_slice(), 2.0);
|
|
|
|
//mirrored GGML unit test
|
|
ggml_quantization_error_test::<BlockQ6K>(GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn quantize_q8k() -> Result<()> {
|
|
use k_quants::BlockQ8K;
|
|
|
|
let (src, mut dst) = get_test_vector(0.5, 1024);
|
|
let _quant = quantize_roundtrip::<BlockQ8K>(src.as_slice(), dst.as_mut_slice())?;
|
|
compare_with_error(dst.as_slice(), src.as_slice(), 0.003);
|
|
|
|
// Test some specific values
|
|
assert_eq!(
|
|
[src[0], src[128], src[256], src[512], src[800], src[1023]],
|
|
[-0.5, -0.375, -0.25, 0.0, 0.28125, 0.49902344]
|
|
);
|
|
let dst = round_vector(&dst);
|
|
assert_eq!(
|
|
[dst[0], dst[128], dst[256], dst[512], dst[800], dst[1023]],
|
|
[-0.5, -0.375, -0.25, -0.0, 0.281, 0.499]
|
|
);
|
|
|
|
let (src_big, mut dst_big) = get_test_vector(128.0, 1024);
|
|
let _quant_big = quantize_roundtrip::<BlockQ8K>(src_big.as_slice(), dst_big.as_mut_slice())?;
|
|
compare_with_error(dst_big.as_slice(), src_big.as_slice(), 0.6);
|
|
|
|
//mirrored GGML unit test
|
|
ggml_quantization_error_test::<BlockQ8K>(GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Very simple dot product implementation
|
|
fn vec_dot_referenze(a: &[f32], b: &[f32]) -> f32 {
|
|
a.iter().zip(b).map(|(a, b)| a * b).sum()
|
|
}
|
|
|
|
/// Returns the error achieved by the GGML matmul unit test.
|
|
fn ggml_reference_matmul_error(quantiztation_tpye: GgmlDType) -> Result<f32> {
|
|
match quantiztation_tpye {
|
|
GgmlDType::F16 => Ok(0.000010),
|
|
GgmlDType::Q2K => Ok(0.004086),
|
|
GgmlDType::Q3K => Ok(0.016148),
|
|
GgmlDType::Q4K => Ok(0.002425),
|
|
GgmlDType::Q5K => Ok(0.000740),
|
|
GgmlDType::Q6K => Ok(0.000952),
|
|
GgmlDType::Q4_0 => Ok(0.001143),
|
|
GgmlDType::Q4_1 => Ok(0.007784),
|
|
GgmlDType::Q5_0 => Ok(0.001353),
|
|
GgmlDType::Q5_1 => Ok(0.001363),
|
|
GgmlDType::Q8_0 => Ok(0.000092),
|
|
_ => candle_core::bail!(
|
|
"No GGML results for quantization type {:?}",
|
|
quantiztation_tpye
|
|
),
|
|
}
|
|
}
|
|
|
|
/// Mirrores the GGML matmul unit test: https://github.com/ggerganov/llama.cpp/blob/master/tests/test-quantize-fns.cpp#L76-L91
|
|
fn ggml_matmul_error_test<T: GgmlType>() -> Result<()> {
|
|
let a = create_ggml_like_vector(0.0);
|
|
let b = create_ggml_like_vector(1.0);
|
|
let length = a.len();
|
|
|
|
let mut a_quant = vec![T::zeros(); length / T::BLCK_SIZE];
|
|
let mut b_quant = vec![T::VecDotType::zeros(); length / T::VecDotType::BLCK_SIZE];
|
|
T::from_float(&a, &mut a_quant)?;
|
|
T::VecDotType::from_float(&b, &mut b_quant)?;
|
|
|
|
let result = T::vec_dot(length, &a_quant, &b_quant)?;
|
|
let reference_result = vec_dot_referenze(&a, &b);
|
|
|
|
let error = (result - reference_result).abs() / length as f32;
|
|
|
|
let ggml_error = ggml_reference_matmul_error(T::DTYPE)?;
|
|
|
|
if error > GGML_MAX_DOT_PRODUCT_ERROR {
|
|
candle_core::bail!(
|
|
"Dot product error {} exceeds max error {}",
|
|
error,
|
|
GGML_MAX_DOT_PRODUCT_ERROR
|
|
);
|
|
}
|
|
|
|
// We diverge slightly due to different rounding behavior / f16 to f32 conversions in GGML
|
|
// => we use a slightly higher error threshold
|
|
const ERROR_LENIENCY: f32 = 0.00001;
|
|
if error - ERROR_LENIENCY > ggml_error {
|
|
candle_core::bail!(
|
|
"Dot product error {} exceeds ggml reference error {}",
|
|
error,
|
|
ggml_error
|
|
);
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// generates random tensors of size `m x k` and `n x k` and calculates their expected matrix multiplication result.
|
|
fn get_random_tensors(
|
|
m: usize,
|
|
k: usize,
|
|
n: usize,
|
|
device: &Device,
|
|
) -> Result<(Tensor, Tensor, Tensor)> {
|
|
let mut rng = StdRng::seed_from_u64(314159265358979);
|
|
|
|
let lhs = (0..m * k)
|
|
.map(|_| rng.gen::<f32>() - 0.5)
|
|
.collect::<Vec<_>>();
|
|
let rhs = (0..n * k)
|
|
.map(|_| rng.gen::<f32>() - 0.5)
|
|
.collect::<Vec<_>>();
|
|
|
|
let lhs = Tensor::from_vec(lhs, (m, k), device)?;
|
|
let rhs = Tensor::from_vec(rhs, (n, k), device)?;
|
|
|
|
let mm = lhs.matmul(&rhs.t()?)?;
|
|
Ok((lhs, rhs, mm))
|
|
}
|
|
|
|
#[test]
|
|
fn quantized_matmul_q2k() -> Result<()> {
|
|
use k_quants::BlockQ2K;
|
|
|
|
let cpu = &Device::Cpu;
|
|
let (m, k, n) = (11, 512, 21);
|
|
let (lhs, rhs, mm) = get_random_tensors(m, k, n, cpu)?;
|
|
assert_eq!(mm.dims(), [m, n]);
|
|
let dst = mm.flatten_all()?.to_vec1::<f32>()?;
|
|
let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]);
|
|
assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]);
|
|
|
|
let rhs = quantized::QTensor::quantize::<BlockQ2K>(&rhs)?;
|
|
let rhs = quantized::QMatMul::from_qtensor(rhs);
|
|
let mm = rhs.forward(&lhs)?;
|
|
|
|
assert_eq!(mm.dims(), [m, n]);
|
|
let dst = mm.flatten_all()?.to_vec1::<f32>()?;
|
|
let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]);
|
|
assert_eq!(dst, [0.916, 0.422, 0.215, 1.668]);
|
|
|
|
//mirrored GGML unit test
|
|
ggml_matmul_error_test::<BlockQ2K>()?;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn quantized_matmul_q3k() -> Result<()> {
|
|
use k_quants::BlockQ3K;
|
|
|
|
let cpu = &Device::Cpu;
|
|
let (m, k, n) = (11, 512, 21);
|
|
let (lhs, rhs, mm) = get_random_tensors(m, k, n, cpu)?;
|
|
assert_eq!(mm.dims(), [m, n]);
|
|
let dst = mm.flatten_all()?.to_vec1::<f32>()?;
|
|
let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]);
|
|
assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]);
|
|
|
|
let rhs = quantized::QTensor::quantize::<BlockQ3K>(&rhs)?;
|
|
let rhs = quantized::QMatMul::from_qtensor(rhs);
|
|
let mm = rhs.forward(&lhs)?;
|
|
|
|
assert_eq!(mm.dims(), [m, n]);
|
|
let dst = mm.flatten_all()?.to_vec1::<f32>()?;
|
|
let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]);
|
|
assert_eq!(dst, [1.029, 1.418, -0.314, 1.495]);
|
|
|
|
//mirrored GGML unit test
|
|
ggml_matmul_error_test::<BlockQ3K>()?;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn quantized_matmul_q4k() -> Result<()> {
|
|
use k_quants::BlockQ4K;
|
|
|
|
let cpu = &Device::Cpu;
|
|
let (m, k, n) = (11, 512, 21);
|
|
let (lhs, rhs, mm) = get_random_tensors(m, k, n, cpu)?;
|
|
assert_eq!(mm.dims(), [m, n]);
|
|
let dst = mm.flatten_all()?.to_vec1::<f32>()?;
|
|
let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]);
|
|
assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]);
|
|
|
|
let rhs = quantized::QTensor::quantize::<BlockQ4K>(&rhs)?;
|
|
let rhs = quantized::QMatMul::from_qtensor(rhs);
|
|
let mm = rhs.forward(&lhs)?;
|
|
|
|
assert_eq!(mm.dims(), [m, n]);
|
|
let dst = mm.flatten_all()?.to_vec1::<f32>()?;
|
|
let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]);
|
|
assert_eq!(dst, [1.125, 1.435, -0.201, 1.589]);
|
|
|
|
//mirrored GGML unit test
|
|
ggml_matmul_error_test::<BlockQ4K>()?;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn quantized_matmul_q5k() -> Result<()> {
|
|
use k_quants::BlockQ5K;
|
|
|
|
let cpu = &Device::Cpu;
|
|
let (m, k, n) = (11, 512, 21);
|
|
let (lhs, rhs, mm) = get_random_tensors(m, k, n, cpu)?;
|
|
assert_eq!(mm.dims(), [m, n]);
|
|
let dst = mm.flatten_all()?.to_vec1::<f32>()?;
|
|
let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]);
|
|
assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]);
|
|
|
|
let rhs = quantized::QTensor::quantize::<BlockQ5K>(&rhs)?;
|
|
let rhs = quantized::QMatMul::from_qtensor(rhs);
|
|
let mm = rhs.forward(&lhs)?;
|
|
|
|
assert_eq!(mm.dims(), [m, n]);
|
|
let dst = mm.flatten_all()?.to_vec1::<f32>()?;
|
|
let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]);
|
|
assert_eq!(dst, [1.192, 1.491, -0.18, 1.743]);
|
|
|
|
//mirrored GGML unit test
|
|
//Expected: 0.000740408897
|
|
ggml_matmul_error_test::<BlockQ5K>()?;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn quantized_matmul_q6k() -> Result<()> {
|
|
use k_quants::BlockQ6K;
|
|
|
|
let cpu = &Device::Cpu;
|
|
let (m, k, n) = (11, 512, 21);
|
|
let (lhs, rhs, mm) = get_random_tensors(m, k, n, cpu)?;
|
|
assert_eq!(mm.dims(), [m, n]);
|
|
let dst = mm.flatten_all()?.to_vec1::<f32>()?;
|
|
let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]);
|
|
assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]);
|
|
|
|
let rhs = quantized::QTensor::quantize::<BlockQ6K>(&rhs)?;
|
|
let rhs = quantized::QMatMul::from_qtensor(rhs);
|
|
let mm = rhs.forward(&lhs)?;
|
|
|
|
assert_eq!(mm.dims(), [m, n]);
|
|
let dst = mm.flatten_all()?.to_vec1::<f32>()?;
|
|
let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]);
|
|
assert_eq!(dst, [1.324, 1.49, -0.164, 1.741]);
|
|
|
|
//mirrored GGML unit test
|
|
ggml_matmul_error_test::<BlockQ6K>()?;
|
|
|
|
Ok(())
|
|
}
|