mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 02:38:10 +00:00
34 lines
1.2 KiB
Rust
34 lines
1.2 KiB
Rust
use candle::{DType, Device, Result, Tensor};
|
|
use candle_nn::{linear, AdamW, Linear, Module, ParamsAdamW, VarBuilder, VarMap};
|
|
|
|
fn gen_data() -> Result<(Tensor, Tensor)> {
|
|
// Generate some sample linear data.
|
|
let w_gen = Tensor::new(&[[3f32, 1.]], &Device::Cpu)?;
|
|
let b_gen = Tensor::new(-2f32, &Device::Cpu)?;
|
|
let gen = Linear::new(w_gen, Some(b_gen));
|
|
let sample_xs = Tensor::new(&[[2f32, 1.], [7., 4.], [-4., 12.], [5., 8.]], &Device::Cpu)?;
|
|
let sample_ys = gen.forward(&sample_xs)?;
|
|
Ok((sample_xs, sample_ys))
|
|
}
|
|
|
|
fn main() -> Result<()> {
|
|
let (sample_xs, sample_ys) = gen_data()?;
|
|
|
|
// Use backprop to run a linear regression between samples and get the coefficients back.
|
|
let varmap = VarMap::new();
|
|
let vb = VarBuilder::from_varmap(&varmap, DType::F32, &Device::Cpu);
|
|
let model = linear(2, 1, vb.pp("linear"))?;
|
|
let params = ParamsAdamW {
|
|
lr: 0.1,
|
|
..Default::default()
|
|
};
|
|
let mut opt = AdamW::new(varmap.all_vars(), params)?;
|
|
for step in 0..10000 {
|
|
let ys = model.forward(&sample_xs)?;
|
|
let loss = ys.sub(&sample_ys)?.sqr()?.sum_all()?;
|
|
opt.backward_step(&loss)?;
|
|
println!("{step} {}", loss.to_vec0::<f32>()?);
|
|
}
|
|
Ok(())
|
|
}
|