mirror of
https://github.com/huggingface/candle.git
synced 2025-06-20 20:09:50 +00:00
258 lines
7.7 KiB
Rust
258 lines
7.7 KiB
Rust
//! VGG-16 model implementation.
|
|
//!
|
|
//! See Very Deep Convolutional Networks for Large-Scale Image Recognition
|
|
//! <https://arxiv.org/abs/1409.1556>
|
|
use candle::{ModuleT, Result, Tensor};
|
|
use candle_nn::{FuncT, VarBuilder};
|
|
|
|
// Enum representing the different VGG models
|
|
pub enum Models {
|
|
Vgg13,
|
|
Vgg16,
|
|
Vgg19,
|
|
}
|
|
|
|
// Struct representing a VGG model
|
|
#[derive(Debug)]
|
|
pub struct Vgg<'a> {
|
|
blocks: Vec<FuncT<'a>>,
|
|
}
|
|
|
|
// Struct representing the configuration for the pre-logit layer
|
|
struct PreLogitConfig {
|
|
in_dim: (usize, usize, usize, usize),
|
|
target_in: usize,
|
|
target_out: usize,
|
|
}
|
|
|
|
// Implementation of the VGG model
|
|
impl<'a> Vgg<'a> {
|
|
// Function to create a new VGG model
|
|
pub fn new(vb: VarBuilder<'a>, model: Models) -> Result<Self> {
|
|
let blocks = match model {
|
|
Models::Vgg13 => vgg13_blocks(vb)?,
|
|
Models::Vgg16 => vgg16_blocks(vb)?,
|
|
Models::Vgg19 => vgg19_blocks(vb)?,
|
|
};
|
|
Ok(Self { blocks })
|
|
}
|
|
}
|
|
|
|
// Implementation of the forward pass for the VGG model
|
|
impl ModuleT for Vgg<'_> {
|
|
fn forward_t(&self, xs: &Tensor, train: bool) -> Result<Tensor> {
|
|
let mut xs = xs.unsqueeze(0)?;
|
|
for block in self.blocks.iter() {
|
|
xs = xs.apply_t(block, train)?;
|
|
}
|
|
Ok(xs)
|
|
}
|
|
}
|
|
|
|
// Function to create a conv2d block
|
|
// The block is composed of two conv2d layers followed by a max pool layer
|
|
fn conv2d_block(convs: &[(usize, usize, &str)], vb: &VarBuilder) -> Result<FuncT<'static>> {
|
|
let layers = convs
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(_, &(in_c, out_c, name))| {
|
|
candle_nn::conv2d(
|
|
in_c,
|
|
out_c,
|
|
3,
|
|
candle_nn::Conv2dConfig {
|
|
stride: 1,
|
|
padding: 1,
|
|
..Default::default()
|
|
},
|
|
vb.pp(name),
|
|
)
|
|
})
|
|
.collect::<Result<Vec<_>>>()?;
|
|
|
|
Ok(FuncT::new(move |xs, _train| {
|
|
let mut xs = xs.clone();
|
|
for layer in layers.iter() {
|
|
xs = xs.apply(layer)?.relu()?
|
|
}
|
|
xs = xs.max_pool2d_with_stride(2, 2)?;
|
|
Ok(xs)
|
|
}))
|
|
}
|
|
|
|
// Function to create a fully connected layer
|
|
// The layer is composed of two linear layers followed by a dropout layer
|
|
fn fully_connected(
|
|
num_classes: usize,
|
|
pre_logit_1: PreLogitConfig,
|
|
pre_logit_2: PreLogitConfig,
|
|
vb: VarBuilder,
|
|
) -> Result<FuncT> {
|
|
let lin = get_weights_and_biases(
|
|
&vb.pp("pre_logits.fc1"),
|
|
pre_logit_1.in_dim,
|
|
pre_logit_1.target_in,
|
|
pre_logit_1.target_out,
|
|
)?;
|
|
let lin2 = get_weights_and_biases(
|
|
&vb.pp("pre_logits.fc2"),
|
|
pre_logit_2.in_dim,
|
|
pre_logit_2.target_in,
|
|
pre_logit_2.target_out,
|
|
)?;
|
|
let dropout1 = candle_nn::Dropout::new(0.5);
|
|
let dropout2 = candle_nn::Dropout::new(0.5);
|
|
let dropout3 = candle_nn::Dropout::new(0.5);
|
|
Ok(FuncT::new(move |xs, train| {
|
|
let xs = xs.reshape((1, pre_logit_1.target_out))?;
|
|
let xs = xs.apply_t(&dropout1, train)?.apply(&lin)?.relu()?;
|
|
let xs = xs.apply_t(&dropout2, train)?.apply(&lin2)?.relu()?;
|
|
let lin3 = candle_nn::linear(4096, num_classes, vb.pp("head.fc"))?;
|
|
let xs = xs.apply_t(&dropout3, train)?.apply(&lin3)?.relu()?;
|
|
Ok(xs)
|
|
}))
|
|
}
|
|
|
|
// Function to get the weights and biases for a layer
|
|
// This is required because the weights and biases are stored in different format than our linear layer expects
|
|
fn get_weights_and_biases(
|
|
vs: &VarBuilder,
|
|
in_dim: (usize, usize, usize, usize),
|
|
target_in: usize,
|
|
target_out: usize,
|
|
) -> Result<candle_nn::Linear> {
|
|
let init_ws = candle_nn::init::DEFAULT_KAIMING_NORMAL;
|
|
let ws = vs.get_with_hints(in_dim, "weight", init_ws)?;
|
|
let ws = ws.reshape((target_in, target_out))?;
|
|
let bound = 1. / (target_out as f64).sqrt();
|
|
let init_bs = candle_nn::Init::Uniform {
|
|
lo: -bound,
|
|
up: bound,
|
|
};
|
|
let bs = vs.get_with_hints(target_in, "bias", init_bs)?;
|
|
Ok(candle_nn::Linear::new(ws, Some(bs)))
|
|
}
|
|
|
|
fn vgg13_blocks(vb: VarBuilder) -> Result<Vec<FuncT>> {
|
|
let num_classes = 1000;
|
|
let blocks = vec![
|
|
conv2d_block(&[(3, 64, "features.0"), (64, 64, "features.2")], &vb)?,
|
|
conv2d_block(&[(64, 128, "features.5"), (128, 128, "features.7")], &vb)?,
|
|
conv2d_block(&[(128, 256, "features.10"), (256, 256, "features.12")], &vb)?,
|
|
conv2d_block(&[(256, 512, "features.15"), (512, 512, "features.17")], &vb)?,
|
|
conv2d_block(&[(512, 512, "features.20"), (512, 512, "features.22")], &vb)?,
|
|
fully_connected(
|
|
num_classes,
|
|
PreLogitConfig {
|
|
in_dim: (4096, 512, 7, 7),
|
|
target_in: 4096,
|
|
target_out: 512 * 7 * 7,
|
|
},
|
|
PreLogitConfig {
|
|
in_dim: (4096, 4096, 1, 1),
|
|
target_in: 4096,
|
|
target_out: 4096,
|
|
},
|
|
vb.clone(),
|
|
)?,
|
|
];
|
|
Ok(blocks)
|
|
}
|
|
|
|
fn vgg16_blocks(vb: VarBuilder) -> Result<Vec<FuncT>> {
|
|
let num_classes = 1000;
|
|
let blocks = vec![
|
|
conv2d_block(&[(3, 64, "features.0"), (64, 64, "features.2")], &vb)?,
|
|
conv2d_block(&[(64, 128, "features.5"), (128, 128, "features.7")], &vb)?,
|
|
conv2d_block(
|
|
&[
|
|
(128, 256, "features.10"),
|
|
(256, 256, "features.12"),
|
|
(256, 256, "features.14"),
|
|
],
|
|
&vb,
|
|
)?,
|
|
conv2d_block(
|
|
&[
|
|
(256, 512, "features.17"),
|
|
(512, 512, "features.19"),
|
|
(512, 512, "features.21"),
|
|
],
|
|
&vb,
|
|
)?,
|
|
conv2d_block(
|
|
&[
|
|
(512, 512, "features.24"),
|
|
(512, 512, "features.26"),
|
|
(512, 512, "features.28"),
|
|
],
|
|
&vb,
|
|
)?,
|
|
fully_connected(
|
|
num_classes,
|
|
PreLogitConfig {
|
|
in_dim: (4096, 512, 7, 7),
|
|
target_in: 4096,
|
|
target_out: 512 * 7 * 7,
|
|
},
|
|
PreLogitConfig {
|
|
in_dim: (4096, 4096, 1, 1),
|
|
target_in: 4096,
|
|
target_out: 4096,
|
|
},
|
|
vb.clone(),
|
|
)?,
|
|
];
|
|
Ok(blocks)
|
|
}
|
|
|
|
fn vgg19_blocks(vb: VarBuilder) -> Result<Vec<FuncT>> {
|
|
let num_classes = 1000;
|
|
let blocks = vec![
|
|
conv2d_block(&[(3, 64, "features.0"), (64, 64, "features.2")], &vb)?,
|
|
conv2d_block(&[(64, 128, "features.5"), (128, 128, "features.7")], &vb)?,
|
|
conv2d_block(
|
|
&[
|
|
(128, 256, "features.10"),
|
|
(256, 256, "features.12"),
|
|
(256, 256, "features.14"),
|
|
(256, 256, "features.16"),
|
|
],
|
|
&vb,
|
|
)?,
|
|
conv2d_block(
|
|
&[
|
|
(256, 512, "features.19"),
|
|
(512, 512, "features.21"),
|
|
(512, 512, "features.23"),
|
|
(512, 512, "features.25"),
|
|
],
|
|
&vb,
|
|
)?,
|
|
conv2d_block(
|
|
&[
|
|
(512, 512, "features.28"),
|
|
(512, 512, "features.30"),
|
|
(512, 512, "features.32"),
|
|
(512, 512, "features.34"),
|
|
],
|
|
&vb,
|
|
)?,
|
|
fully_connected(
|
|
num_classes,
|
|
PreLogitConfig {
|
|
in_dim: (4096, 512, 7, 7),
|
|
target_in: 4096,
|
|
target_out: 512 * 7 * 7,
|
|
},
|
|
PreLogitConfig {
|
|
in_dim: (4096, 4096, 1, 1),
|
|
target_in: 4096,
|
|
target_out: 4096,
|
|
},
|
|
vb.clone(),
|
|
)?,
|
|
];
|
|
Ok(blocks)
|
|
}
|