mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 18:28:24 +00:00
386 lines
13 KiB
Rust
386 lines
13 KiB
Rust
#[cfg(feature = "accelerate")]
|
|
extern crate accelerate_src;
|
|
|
|
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
use candle_transformers::models::stable_diffusion;
|
|
use candle_transformers::models::wuerstchen;
|
|
|
|
use anyhow::{Error as E, Result};
|
|
use candle::{DType, Device, IndexOp, Tensor};
|
|
use clap::Parser;
|
|
use tokenizers::Tokenizer;
|
|
|
|
const PRIOR_GUIDANCE_SCALE: f64 = 4.0;
|
|
const RESOLUTION_MULTIPLE: f64 = 42.67;
|
|
const LATENT_DIM_SCALE: f64 = 10.67;
|
|
const PRIOR_CIN: usize = 16;
|
|
const DECODER_CIN: usize = 4;
|
|
|
|
#[derive(Parser)]
|
|
#[command(author, version, about, long_about = None)]
|
|
struct Args {
|
|
/// The prompt to be used for image generation.
|
|
#[arg(
|
|
long,
|
|
default_value = "A very realistic photo of a rusty robot walking on a sandy beach"
|
|
)]
|
|
prompt: String,
|
|
|
|
#[arg(long, default_value = "")]
|
|
uncond_prompt: String,
|
|
|
|
/// Run on CPU rather than on GPU.
|
|
#[arg(long)]
|
|
cpu: bool,
|
|
|
|
/// Enable tracing (generates a trace-timestamp.json file).
|
|
#[arg(long)]
|
|
tracing: bool,
|
|
|
|
#[arg(long)]
|
|
use_flash_attn: bool,
|
|
|
|
/// The height in pixels of the generated image.
|
|
#[arg(long)]
|
|
height: Option<usize>,
|
|
|
|
/// The width in pixels of the generated image.
|
|
#[arg(long)]
|
|
width: Option<usize>,
|
|
|
|
/// The decoder weight file, in .safetensors format.
|
|
#[arg(long, value_name = "FILE")]
|
|
decoder_weights: Option<String>,
|
|
|
|
/// The CLIP weight file, in .safetensors format.
|
|
#[arg(long, value_name = "FILE")]
|
|
clip_weights: Option<String>,
|
|
|
|
/// The CLIP weight file used by the prior model, in .safetensors format.
|
|
#[arg(long, value_name = "FILE")]
|
|
prior_clip_weights: Option<String>,
|
|
|
|
/// The prior weight file, in .safetensors format.
|
|
#[arg(long, value_name = "FILE")]
|
|
prior_weights: Option<String>,
|
|
|
|
/// The VQGAN weight file, in .safetensors format.
|
|
#[arg(long, value_name = "FILE")]
|
|
vqgan_weights: Option<String>,
|
|
|
|
#[arg(long, value_name = "FILE")]
|
|
/// The file specifying the tokenizer to used for tokenization.
|
|
tokenizer: Option<String>,
|
|
|
|
#[arg(long, value_name = "FILE")]
|
|
/// The file specifying the tokenizer to used for prior tokenization.
|
|
prior_tokenizer: Option<String>,
|
|
|
|
/// The number of samples to generate.
|
|
#[arg(long, default_value_t = 1)]
|
|
num_samples: i64,
|
|
|
|
/// The name of the final image to generate.
|
|
#[arg(long, value_name = "FILE", default_value = "sd_final.png")]
|
|
final_image: String,
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
|
enum ModelFile {
|
|
Tokenizer,
|
|
PriorTokenizer,
|
|
Clip,
|
|
PriorClip,
|
|
Decoder,
|
|
VqGan,
|
|
Prior,
|
|
}
|
|
|
|
impl ModelFile {
|
|
fn get(&self, filename: Option<String>) -> Result<std::path::PathBuf> {
|
|
use hf_hub::api::sync::Api;
|
|
match filename {
|
|
Some(filename) => Ok(std::path::PathBuf::from(filename)),
|
|
None => {
|
|
let repo_main = "warp-ai/wuerstchen";
|
|
let repo_prior = "warp-ai/wuerstchen-prior";
|
|
let (repo, path) = match self {
|
|
Self::Tokenizer => (repo_main, "tokenizer/tokenizer.json"),
|
|
Self::PriorTokenizer => (repo_prior, "tokenizer/tokenizer.json"),
|
|
Self::Clip => (repo_main, "text_encoder/model.safetensors"),
|
|
Self::PriorClip => (repo_prior, "text_encoder/model.safetensors"),
|
|
Self::Decoder => (repo_main, "decoder/diffusion_pytorch_model.safetensors"),
|
|
Self::VqGan => (repo_main, "vqgan/diffusion_pytorch_model.safetensors"),
|
|
Self::Prior => (repo_prior, "prior/diffusion_pytorch_model.safetensors"),
|
|
};
|
|
let filename = Api::new()?.model(repo.to_string()).get(path)?;
|
|
Ok(filename)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn output_filename(
|
|
basename: &str,
|
|
sample_idx: i64,
|
|
num_samples: i64,
|
|
timestep_idx: Option<usize>,
|
|
) -> String {
|
|
let filename = if num_samples > 1 {
|
|
match basename.rsplit_once('.') {
|
|
None => format!("{basename}.{sample_idx}.png"),
|
|
Some((filename_no_extension, extension)) => {
|
|
format!("{filename_no_extension}.{sample_idx}.{extension}")
|
|
}
|
|
}
|
|
} else {
|
|
basename.to_string()
|
|
};
|
|
match timestep_idx {
|
|
None => filename,
|
|
Some(timestep_idx) => match filename.rsplit_once('.') {
|
|
None => format!("{filename}-{timestep_idx}.png"),
|
|
Some((filename_no_extension, extension)) => {
|
|
format!("{filename_no_extension}-{timestep_idx}.{extension}")
|
|
}
|
|
},
|
|
}
|
|
}
|
|
|
|
fn encode_prompt(
|
|
prompt: &str,
|
|
uncond_prompt: Option<&str>,
|
|
tokenizer: std::path::PathBuf,
|
|
clip_weights: std::path::PathBuf,
|
|
clip_config: stable_diffusion::clip::Config,
|
|
device: &Device,
|
|
) -> Result<Tensor> {
|
|
let tokenizer = Tokenizer::from_file(tokenizer).map_err(E::msg)?;
|
|
let pad_id = match &clip_config.pad_with {
|
|
Some(padding) => *tokenizer.get_vocab(true).get(padding.as_str()).unwrap(),
|
|
None => *tokenizer.get_vocab(true).get("<|endoftext|>").unwrap(),
|
|
};
|
|
println!("Running with prompt \"{prompt}\".");
|
|
let mut tokens = tokenizer
|
|
.encode(prompt, true)
|
|
.map_err(E::msg)?
|
|
.get_ids()
|
|
.to_vec();
|
|
let tokens_len = tokens.len();
|
|
while tokens.len() < clip_config.max_position_embeddings {
|
|
tokens.push(pad_id)
|
|
}
|
|
let tokens = Tensor::new(tokens.as_slice(), device)?.unsqueeze(0)?;
|
|
|
|
println!("Building the clip transformer.");
|
|
let text_model =
|
|
stable_diffusion::build_clip_transformer(&clip_config, clip_weights, device, DType::F32)?;
|
|
let text_embeddings = text_model.forward_with_mask(&tokens, tokens_len - 1)?;
|
|
match uncond_prompt {
|
|
None => Ok(text_embeddings),
|
|
Some(uncond_prompt) => {
|
|
let mut uncond_tokens = tokenizer
|
|
.encode(uncond_prompt, true)
|
|
.map_err(E::msg)?
|
|
.get_ids()
|
|
.to_vec();
|
|
let uncond_tokens_len = uncond_tokens.len();
|
|
while uncond_tokens.len() < clip_config.max_position_embeddings {
|
|
uncond_tokens.push(pad_id)
|
|
}
|
|
let uncond_tokens = Tensor::new(uncond_tokens.as_slice(), device)?.unsqueeze(0)?;
|
|
|
|
let uncond_embeddings =
|
|
text_model.forward_with_mask(&uncond_tokens, uncond_tokens_len - 1)?;
|
|
let text_embeddings = Tensor::cat(&[text_embeddings, uncond_embeddings], 0)?;
|
|
Ok(text_embeddings)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn run(args: Args) -> Result<()> {
|
|
use tracing_chrome::ChromeLayerBuilder;
|
|
use tracing_subscriber::prelude::*;
|
|
|
|
let Args {
|
|
prompt,
|
|
uncond_prompt,
|
|
cpu,
|
|
height,
|
|
width,
|
|
tokenizer,
|
|
final_image,
|
|
num_samples,
|
|
clip_weights,
|
|
prior_weights,
|
|
vqgan_weights,
|
|
decoder_weights,
|
|
tracing,
|
|
..
|
|
} = args;
|
|
|
|
let _guard = if tracing {
|
|
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
|
tracing_subscriber::registry().with(chrome_layer).init();
|
|
Some(guard)
|
|
} else {
|
|
None
|
|
};
|
|
|
|
let device = candle_examples::device(cpu)?;
|
|
let height = height.unwrap_or(1024);
|
|
let width = width.unwrap_or(1024);
|
|
|
|
let prior_text_embeddings = {
|
|
let tokenizer = ModelFile::PriorTokenizer.get(args.prior_tokenizer)?;
|
|
let weights = ModelFile::PriorClip.get(args.prior_clip_weights)?;
|
|
encode_prompt(
|
|
&prompt,
|
|
Some(&uncond_prompt),
|
|
tokenizer.clone(),
|
|
weights,
|
|
stable_diffusion::clip::Config::wuerstchen_prior(),
|
|
&device,
|
|
)?
|
|
};
|
|
println!("generated prior text embeddings {prior_text_embeddings:?}");
|
|
|
|
let text_embeddings = {
|
|
let tokenizer = ModelFile::Tokenizer.get(tokenizer)?;
|
|
let weights = ModelFile::Clip.get(clip_weights)?;
|
|
encode_prompt(
|
|
&prompt,
|
|
None,
|
|
tokenizer.clone(),
|
|
weights,
|
|
stable_diffusion::clip::Config::wuerstchen(),
|
|
&device,
|
|
)?
|
|
};
|
|
println!("generated text embeddings {text_embeddings:?}");
|
|
|
|
println!("Building the prior.");
|
|
let b_size = 1;
|
|
let image_embeddings = {
|
|
// https://huggingface.co/warp-ai/wuerstchen-prior/blob/main/prior/config.json
|
|
let latent_height = (height as f64 / RESOLUTION_MULTIPLE).ceil() as usize;
|
|
let latent_width = (width as f64 / RESOLUTION_MULTIPLE).ceil() as usize;
|
|
let mut latents = Tensor::randn(
|
|
0f32,
|
|
1f32,
|
|
(b_size, PRIOR_CIN, latent_height, latent_width),
|
|
&device,
|
|
)?;
|
|
|
|
let prior = {
|
|
let file = ModelFile::Prior.get(prior_weights)?;
|
|
let vb = unsafe {
|
|
candle_nn::VarBuilder::from_mmaped_safetensors(&[file], DType::F32, &device)?
|
|
};
|
|
wuerstchen::prior::WPrior::new(
|
|
/* c_in */ PRIOR_CIN,
|
|
/* c */ 1536,
|
|
/* c_cond */ 1280,
|
|
/* c_r */ 64,
|
|
/* depth */ 32,
|
|
/* nhead */ 24,
|
|
args.use_flash_attn,
|
|
vb,
|
|
)?
|
|
};
|
|
let prior_scheduler = wuerstchen::ddpm::DDPMWScheduler::new(60, Default::default())?;
|
|
let timesteps = prior_scheduler.timesteps();
|
|
let timesteps = ×teps[..timesteps.len() - 1];
|
|
println!("prior denoising");
|
|
for (index, &t) in timesteps.iter().enumerate() {
|
|
let start_time = std::time::Instant::now();
|
|
let latent_model_input = Tensor::cat(&[&latents, &latents], 0)?;
|
|
let ratio = (Tensor::ones(2, DType::F32, &device)? * t)?;
|
|
let noise_pred = prior.forward(&latent_model_input, &ratio, &prior_text_embeddings)?;
|
|
let noise_pred = noise_pred.chunk(2, 0)?;
|
|
let (noise_pred_text, noise_pred_uncond) = (&noise_pred[0], &noise_pred[1]);
|
|
let noise_pred = (noise_pred_uncond
|
|
+ ((noise_pred_text - noise_pred_uncond)? * PRIOR_GUIDANCE_SCALE)?)?;
|
|
latents = prior_scheduler.step(&noise_pred, t, &latents)?;
|
|
let dt = start_time.elapsed().as_secs_f32();
|
|
println!("step {}/{} done, {:.2}s", index + 1, timesteps.len(), dt);
|
|
}
|
|
((latents * 42.)? - 1.)?
|
|
};
|
|
|
|
println!("Building the vqgan.");
|
|
let vqgan = {
|
|
let file = ModelFile::VqGan.get(vqgan_weights)?;
|
|
let vb = unsafe {
|
|
candle_nn::VarBuilder::from_mmaped_safetensors(&[file], DType::F32, &device)?
|
|
};
|
|
wuerstchen::paella_vq::PaellaVQ::new(vb)?
|
|
};
|
|
|
|
println!("Building the decoder.");
|
|
|
|
// https://huggingface.co/warp-ai/wuerstchen/blob/main/decoder/config.json
|
|
let decoder = {
|
|
let file = ModelFile::Decoder.get(decoder_weights)?;
|
|
let vb = unsafe {
|
|
candle_nn::VarBuilder::from_mmaped_safetensors(&[file], DType::F32, &device)?
|
|
};
|
|
wuerstchen::diffnext::WDiffNeXt::new(
|
|
/* c_in */ DECODER_CIN,
|
|
/* c_out */ DECODER_CIN,
|
|
/* c_r */ 64,
|
|
/* c_cond */ 1024,
|
|
/* clip_embd */ 1024,
|
|
/* patch_size */ 2,
|
|
args.use_flash_attn,
|
|
vb,
|
|
)?
|
|
};
|
|
|
|
for idx in 0..num_samples {
|
|
// https://huggingface.co/warp-ai/wuerstchen/blob/main/model_index.json
|
|
let latent_height = (image_embeddings.dim(2)? as f64 * LATENT_DIM_SCALE) as usize;
|
|
let latent_width = (image_embeddings.dim(3)? as f64 * LATENT_DIM_SCALE) as usize;
|
|
|
|
let mut latents = Tensor::randn(
|
|
0f32,
|
|
1f32,
|
|
(b_size, DECODER_CIN, latent_height, latent_width),
|
|
&device,
|
|
)?;
|
|
|
|
println!("diffusion process with prior {image_embeddings:?}");
|
|
let scheduler = wuerstchen::ddpm::DDPMWScheduler::new(12, Default::default())?;
|
|
let timesteps = scheduler.timesteps();
|
|
let timesteps = ×teps[..timesteps.len() - 1];
|
|
for (index, &t) in timesteps.iter().enumerate() {
|
|
let start_time = std::time::Instant::now();
|
|
let ratio = (Tensor::ones(1, DType::F32, &device)? * t)?;
|
|
let noise_pred =
|
|
decoder.forward(&latents, &ratio, &image_embeddings, Some(&text_embeddings))?;
|
|
latents = scheduler.step(&noise_pred, t, &latents)?;
|
|
let dt = start_time.elapsed().as_secs_f32();
|
|
println!("step {}/{} done, {:.2}s", index + 1, timesteps.len(), dt);
|
|
}
|
|
println!(
|
|
"Generating the final image for sample {}/{}.",
|
|
idx + 1,
|
|
num_samples
|
|
);
|
|
let image = vqgan.decode(&(&latents * 0.3764)?)?;
|
|
let image = (image.clamp(0f32, 1f32)? * 255.)?
|
|
.to_dtype(DType::U8)?
|
|
.i(0)?;
|
|
let image_filename = output_filename(&final_image, idx + 1, num_samples, None);
|
|
candle_examples::save_image(&image, image_filename)?
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn main() -> Result<()> {
|
|
let args = Args::parse();
|
|
run(args)
|
|
}
|