Files
candle/candle-examples/examples/yolo-v8/main.rs
Laurent Mazare 18036c6ccb Update the image crate + use the re-exported version. (#1893)
* Update the image crate + use the re-exported version.

* Update to using ab_glyph.
2024-03-21 10:56:41 +01:00

462 lines
14 KiB
Rust

#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
mod model;
use model::{Multiples, YoloV8, YoloV8Pose};
use candle::{DType, Device, IndexOp, Result, Tensor};
use candle_nn::{Module, VarBuilder};
use candle_transformers::object_detection::{non_maximum_suppression, Bbox, KeyPoint};
use clap::{Parser, ValueEnum};
use image::DynamicImage;
// Keypoints as reported by ChatGPT :)
// Nose
// Left Eye
// Right Eye
// Left Ear
// Right Ear
// Left Shoulder
// Right Shoulder
// Left Elbow
// Right Elbow
// Left Wrist
// Right Wrist
// Left Hip
// Right Hip
// Left Knee
// Right Knee
// Left Ankle
// Right Ankle
const KP_CONNECTIONS: [(usize, usize); 16] = [
(0, 1),
(0, 2),
(1, 3),
(2, 4),
(5, 6),
(5, 11),
(6, 12),
(11, 12),
(5, 7),
(6, 8),
(7, 9),
(8, 10),
(11, 13),
(12, 14),
(13, 15),
(14, 16),
];
// Model architecture from https://github.com/ultralytics/ultralytics/issues/189
// https://github.com/tinygrad/tinygrad/blob/master/examples/yolov8.py
pub fn report_detect(
pred: &Tensor,
img: DynamicImage,
w: usize,
h: usize,
confidence_threshold: f32,
nms_threshold: f32,
legend_size: u32,
) -> Result<DynamicImage> {
let pred = pred.to_device(&Device::Cpu)?;
let (pred_size, npreds) = pred.dims2()?;
let nclasses = pred_size - 4;
// The bounding boxes grouped by (maximum) class index.
let mut bboxes: Vec<Vec<Bbox<Vec<KeyPoint>>>> = (0..nclasses).map(|_| vec![]).collect();
// Extract the bounding boxes for which confidence is above the threshold.
for index in 0..npreds {
let pred = Vec::<f32>::try_from(pred.i((.., index))?)?;
let confidence = *pred[4..].iter().max_by(|x, y| x.total_cmp(y)).unwrap();
if confidence > confidence_threshold {
let mut class_index = 0;
for i in 0..nclasses {
if pred[4 + i] > pred[4 + class_index] {
class_index = i
}
}
if pred[class_index + 4] > 0. {
let bbox = Bbox {
xmin: pred[0] - pred[2] / 2.,
ymin: pred[1] - pred[3] / 2.,
xmax: pred[0] + pred[2] / 2.,
ymax: pred[1] + pred[3] / 2.,
confidence,
data: vec![],
};
bboxes[class_index].push(bbox)
}
}
}
non_maximum_suppression(&mut bboxes, nms_threshold);
// Annotate the original image and print boxes information.
let (initial_h, initial_w) = (img.height(), img.width());
let w_ratio = initial_w as f32 / w as f32;
let h_ratio = initial_h as f32 / h as f32;
let mut img = img.to_rgb8();
let font = Vec::from(include_bytes!("roboto-mono-stripped.ttf") as &[u8]);
let font = ab_glyph::FontRef::try_from_slice(&font).map_err(candle::Error::wrap)?;
for (class_index, bboxes_for_class) in bboxes.iter().enumerate() {
for b in bboxes_for_class.iter() {
println!(
"{}: {:?}",
candle_examples::coco_classes::NAMES[class_index],
b
);
let xmin = (b.xmin * w_ratio) as i32;
let ymin = (b.ymin * h_ratio) as i32;
let dx = (b.xmax - b.xmin) * w_ratio;
let dy = (b.ymax - b.ymin) * h_ratio;
if dx >= 0. && dy >= 0. {
imageproc::drawing::draw_hollow_rect_mut(
&mut img,
imageproc::rect::Rect::at(xmin, ymin).of_size(dx as u32, dy as u32),
image::Rgb([255, 0, 0]),
);
}
if legend_size > 0 {
imageproc::drawing::draw_filled_rect_mut(
&mut img,
imageproc::rect::Rect::at(xmin, ymin).of_size(dx as u32, legend_size),
image::Rgb([170, 0, 0]),
);
let legend = format!(
"{} {:.0}%",
candle_examples::coco_classes::NAMES[class_index],
100. * b.confidence
);
imageproc::drawing::draw_text_mut(
&mut img,
image::Rgb([255, 255, 255]),
xmin,
ymin,
ab_glyph::PxScale {
x: legend_size as f32 - 1.,
y: legend_size as f32 - 1.,
},
&font,
&legend,
)
}
}
}
Ok(DynamicImage::ImageRgb8(img))
}
pub fn report_pose(
pred: &Tensor,
img: DynamicImage,
w: usize,
h: usize,
confidence_threshold: f32,
nms_threshold: f32,
) -> Result<DynamicImage> {
let pred = pred.to_device(&Device::Cpu)?;
let (pred_size, npreds) = pred.dims2()?;
if pred_size != 17 * 3 + 4 + 1 {
candle::bail!("unexpected pred-size {pred_size}");
}
let mut bboxes = vec![];
// Extract the bounding boxes for which confidence is above the threshold.
for index in 0..npreds {
let pred = Vec::<f32>::try_from(pred.i((.., index))?)?;
let confidence = pred[4];
if confidence > confidence_threshold {
let keypoints = (0..17)
.map(|i| KeyPoint {
x: pred[3 * i + 5],
y: pred[3 * i + 6],
mask: pred[3 * i + 7],
})
.collect::<Vec<_>>();
let bbox = Bbox {
xmin: pred[0] - pred[2] / 2.,
ymin: pred[1] - pred[3] / 2.,
xmax: pred[0] + pred[2] / 2.,
ymax: pred[1] + pred[3] / 2.,
confidence,
data: keypoints,
};
bboxes.push(bbox)
}
}
let mut bboxes = vec![bboxes];
non_maximum_suppression(&mut bboxes, nms_threshold);
let bboxes = &bboxes[0];
// Annotate the original image and print boxes information.
let (initial_h, initial_w) = (img.height(), img.width());
let w_ratio = initial_w as f32 / w as f32;
let h_ratio = initial_h as f32 / h as f32;
let mut img = img.to_rgb8();
for b in bboxes.iter() {
println!("{b:?}");
let xmin = (b.xmin * w_ratio) as i32;
let ymin = (b.ymin * h_ratio) as i32;
let dx = (b.xmax - b.xmin) * w_ratio;
let dy = (b.ymax - b.ymin) * h_ratio;
if dx >= 0. && dy >= 0. {
imageproc::drawing::draw_hollow_rect_mut(
&mut img,
imageproc::rect::Rect::at(xmin, ymin).of_size(dx as u32, dy as u32),
image::Rgb([255, 0, 0]),
);
}
for kp in b.data.iter() {
if kp.mask < 0.6 {
continue;
}
let x = (kp.x * w_ratio) as i32;
let y = (kp.y * h_ratio) as i32;
imageproc::drawing::draw_filled_circle_mut(
&mut img,
(x, y),
2,
image::Rgb([0, 255, 0]),
);
}
for &(idx1, idx2) in KP_CONNECTIONS.iter() {
let kp1 = &b.data[idx1];
let kp2 = &b.data[idx2];
if kp1.mask < 0.6 || kp2.mask < 0.6 {
continue;
}
imageproc::drawing::draw_line_segment_mut(
&mut img,
(kp1.x * w_ratio, kp1.y * h_ratio),
(kp2.x * w_ratio, kp2.y * h_ratio),
image::Rgb([255, 255, 0]),
);
}
}
Ok(DynamicImage::ImageRgb8(img))
}
#[derive(Clone, Copy, ValueEnum, Debug)]
enum Which {
N,
S,
M,
L,
X,
}
#[derive(Clone, Copy, ValueEnum, Debug)]
enum YoloTask {
Detect,
Pose,
}
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
pub struct Args {
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,
/// Model weights, in safetensors format.
#[arg(long)]
model: Option<String>,
/// Which model variant to use.
#[arg(long, value_enum, default_value_t = Which::S)]
which: Which,
images: Vec<String>,
/// Threshold for the model confidence level.
#[arg(long, default_value_t = 0.25)]
confidence_threshold: f32,
/// Threshold for non-maximum suppression.
#[arg(long, default_value_t = 0.45)]
nms_threshold: f32,
/// The task to be run.
#[arg(long, default_value = "detect")]
task: YoloTask,
/// The size for the legend, 0 means no legend.
#[arg(long, default_value_t = 14)]
legend_size: u32,
}
impl Args {
fn model(&self) -> anyhow::Result<std::path::PathBuf> {
let path = match &self.model {
Some(model) => std::path::PathBuf::from(model),
None => {
let api = hf_hub::api::sync::Api::new()?;
let api = api.model("lmz/candle-yolo-v8".to_string());
let size = match self.which {
Which::N => "n",
Which::S => "s",
Which::M => "m",
Which::L => "l",
Which::X => "x",
};
let task = match self.task {
YoloTask::Pose => "-pose",
YoloTask::Detect => "",
};
api.get(&format!("yolov8{size}{task}.safetensors"))?
}
};
Ok(path)
}
}
pub trait Task: Module + Sized {
fn load(vb: VarBuilder, multiples: Multiples) -> Result<Self>;
fn report(
pred: &Tensor,
img: DynamicImage,
w: usize,
h: usize,
confidence_threshold: f32,
nms_threshold: f32,
legend_size: u32,
) -> Result<DynamicImage>;
}
impl Task for YoloV8 {
fn load(vb: VarBuilder, multiples: Multiples) -> Result<Self> {
YoloV8::load(vb, multiples, /* num_classes=*/ 80)
}
fn report(
pred: &Tensor,
img: DynamicImage,
w: usize,
h: usize,
confidence_threshold: f32,
nms_threshold: f32,
legend_size: u32,
) -> Result<DynamicImage> {
report_detect(
pred,
img,
w,
h,
confidence_threshold,
nms_threshold,
legend_size,
)
}
}
impl Task for YoloV8Pose {
fn load(vb: VarBuilder, multiples: Multiples) -> Result<Self> {
YoloV8Pose::load(vb, multiples, /* num_classes=*/ 1, (17, 3))
}
fn report(
pred: &Tensor,
img: DynamicImage,
w: usize,
h: usize,
confidence_threshold: f32,
nms_threshold: f32,
_legend_size: u32,
) -> Result<DynamicImage> {
report_pose(pred, img, w, h, confidence_threshold, nms_threshold)
}
}
pub fn run<T: Task>(args: Args) -> anyhow::Result<()> {
let device = candle_examples::device(args.cpu)?;
// Create the model and load the weights from the file.
let multiples = match args.which {
Which::N => Multiples::n(),
Which::S => Multiples::s(),
Which::M => Multiples::m(),
Which::L => Multiples::l(),
Which::X => Multiples::x(),
};
let model = args.model()?;
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model], DType::F32, &device)? };
let model = T::load(vb, multiples)?;
println!("model loaded");
for image_name in args.images.iter() {
println!("processing {image_name}");
let mut image_name = std::path::PathBuf::from(image_name);
let original_image = image::io::Reader::open(&image_name)?
.decode()
.map_err(candle::Error::wrap)?;
let (width, height) = {
let w = original_image.width() as usize;
let h = original_image.height() as usize;
if w < h {
let w = w * 640 / h;
// Sizes have to be divisible by 32.
(w / 32 * 32, 640)
} else {
let h = h * 640 / w;
(640, h / 32 * 32)
}
};
let image_t = {
let img = original_image.resize_exact(
width as u32,
height as u32,
image::imageops::FilterType::CatmullRom,
);
let data = img.to_rgb8().into_raw();
Tensor::from_vec(
data,
(img.height() as usize, img.width() as usize, 3),
&device,
)?
.permute((2, 0, 1))?
};
let image_t = (image_t.unsqueeze(0)?.to_dtype(DType::F32)? * (1. / 255.))?;
let predictions = model.forward(&image_t)?.squeeze(0)?;
println!("generated predictions {predictions:?}");
let image_t = T::report(
&predictions,
original_image,
width,
height,
args.confidence_threshold,
args.nms_threshold,
args.legend_size,
)?;
image_name.set_extension("pp.jpg");
println!("writing {image_name:?}");
image_t.save(image_name)?
}
Ok(())
}
pub fn main() -> anyhow::Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;
let args = Args::parse();
let _guard = if args.tracing {
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};
match args.task {
YoloTask::Detect => run::<YoloV8>(args)?,
YoloTask::Pose => run::<YoloV8Pose>(args)?,
}
Ok(())
}