mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 10:26:33 +00:00

* Whisper example in wasm. * Load the model. * Get the whisper demo to work (though slowly). * Polish the UI a bit. * Minor tweak. * More UI. * Add the progress bar.
451 lines
16 KiB
Rust
451 lines
16 KiB
Rust
use crate::model::{Config, Whisper};
|
|
use anyhow::Error as E;
|
|
use candle::{DType, Device, Tensor};
|
|
use candle_nn::VarBuilder;
|
|
use js_sys::Date;
|
|
use rand::distributions::Distribution;
|
|
use tokenizers::Tokenizer;
|
|
use wasm_bindgen::prelude::*;
|
|
use wasm_bindgen_futures::JsFuture;
|
|
use yew::{html, Component, Context, Html};
|
|
|
|
const SAMPLE_NAMES: [&str; 6] = [
|
|
"jfk.wav", "a13.wav", "gb0.wav", "gb1.wav", "hp0.wav", "mm0.wav",
|
|
];
|
|
|
|
pub const DTYPE: DType = DType::F32;
|
|
|
|
// Audio parameters.
|
|
pub const SAMPLE_RATE: usize = 16000;
|
|
pub const N_FFT: usize = 400;
|
|
pub const N_MELS: usize = 80;
|
|
pub const HOP_LENGTH: usize = 160;
|
|
pub const CHUNK_LENGTH: usize = 30;
|
|
pub const N_SAMPLES: usize = CHUNK_LENGTH * SAMPLE_RATE; // 480000 samples in a 30-second chunk
|
|
pub const N_FRAMES: usize = N_SAMPLES / HOP_LENGTH; // 3000 frames in a mel spectrogram input
|
|
pub const N_SAMPLES_PER_TOKEN: usize = HOP_LENGTH * 2; // the initial convolutions has stride 2
|
|
pub const FRAMES_PER_SECOND: usize = SAMPLE_RATE / HOP_LENGTH; // 10ms per audio frame
|
|
pub const TOKENS_PER_SECOND: usize = SAMPLE_RATE / N_SAMPLES_PER_TOKEN; // 20ms per audio token
|
|
|
|
pub const NO_SPEECH_THRESHOLD: f64 = 0.6;
|
|
pub const LOGPROB_THRESHOLD: f64 = -1.0;
|
|
pub const TEMPERATURES: [f64; 6] = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0];
|
|
pub const COMPRESSION_RATIO_THRESHOLD: f64 = 2.4;
|
|
|
|
// Tokenizer dependent bits.
|
|
pub const SOT_TOKEN: u32 = 50257;
|
|
pub const EOT_TOKEN: u32 = 50256;
|
|
pub const NO_SPEECH_TOKEN: u32 = 50361;
|
|
pub const NO_TIMESTAMP_TOKEN: u32 = 50362;
|
|
// From the _get_suppress_tokens function + 50362 (no timestamp)
|
|
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/decoding.py#L605
|
|
pub const SUPPRESS_TOKENS: [u32; 91] = [
|
|
1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357,
|
|
366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782,
|
|
1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959,
|
|
10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992,
|
|
19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549,
|
|
47282, 49146, 50257, 50357, 50358, 50359, 50360, 50361, 50362,
|
|
];
|
|
|
|
#[wasm_bindgen]
|
|
extern "C" {
|
|
// Use `js_namespace` here to bind `console.log(..)` instead of just
|
|
// `log(..)`
|
|
#[wasm_bindgen(js_namespace = console)]
|
|
fn log(s: &str);
|
|
}
|
|
|
|
macro_rules! console_log {
|
|
// Note that this is using the `log` function imported above during
|
|
// `bare_bones`
|
|
($($t:tt)*) => (log(&format_args!($($t)*).to_string()))
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
struct DecodingResult {
|
|
tokens: Vec<u32>,
|
|
text: String,
|
|
avg_logprob: f64,
|
|
no_speech_prob: f64,
|
|
temperature: f64,
|
|
compression_ratio: f64,
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
struct Segment {
|
|
start: f64,
|
|
duration: f64,
|
|
dr: DecodingResult,
|
|
}
|
|
|
|
pub struct Decoder {
|
|
model: Whisper,
|
|
mel_filters: Vec<f32>,
|
|
tokenizer: Tokenizer,
|
|
suppress_tokens: Tensor,
|
|
}
|
|
|
|
impl Decoder {
|
|
fn new(
|
|
model: Whisper,
|
|
tokenizer: Tokenizer,
|
|
mel_filters: Vec<f32>,
|
|
device: &Device,
|
|
) -> anyhow::Result<Self> {
|
|
let suppress_tokens: Vec<f32> = (0..model.config.vocab_size as u32)
|
|
.map(|i| {
|
|
if SUPPRESS_TOKENS.contains(&i) {
|
|
f32::NEG_INFINITY
|
|
} else {
|
|
0f32
|
|
}
|
|
})
|
|
.collect();
|
|
let suppress_tokens = Tensor::new(suppress_tokens.as_slice(), device)?;
|
|
Ok(Self {
|
|
model,
|
|
mel_filters,
|
|
tokenizer,
|
|
suppress_tokens,
|
|
})
|
|
}
|
|
|
|
fn decode(&self, mel: &Tensor, t: f64) -> anyhow::Result<DecodingResult> {
|
|
let model = &self.model;
|
|
let audio_features = model.encoder.forward(mel)?;
|
|
console_log!("audio features: {:?}", audio_features.dims());
|
|
let sample_len = model.config.max_target_positions / 2;
|
|
let mut sum_logprob = 0f64;
|
|
let mut no_speech_prob = f64::NAN;
|
|
let mut tokens = vec![SOT_TOKEN];
|
|
for i in 0..sample_len {
|
|
let tokens_t = Tensor::new(tokens.as_slice(), mel.device())?;
|
|
|
|
// The model expects a batch dim but this inference loop does not handle
|
|
// it so we add it at this point.
|
|
let tokens_t = tokens_t.unsqueeze(0)?;
|
|
let logits = model.decoder.forward(&tokens_t, &audio_features)?;
|
|
let logits = logits.squeeze(0)?;
|
|
|
|
// Extract the no speech probability on the first iteration by looking at the first
|
|
// token logits and the probability for the according token.
|
|
if i == 0 {
|
|
no_speech_prob = logits
|
|
.get(0)?
|
|
.softmax(0)?
|
|
.get(NO_SPEECH_TOKEN as usize)?
|
|
.to_scalar::<f32>()? as f64;
|
|
}
|
|
|
|
let (seq_len, _) = logits.shape().r2()?;
|
|
let logits = logits
|
|
.get(seq_len - 1)?
|
|
.broadcast_add(&self.suppress_tokens)?;
|
|
let next_token = if t > 0f64 {
|
|
let prs = (&logits / t)?.softmax(0)?;
|
|
let logits_v: Vec<f32> = prs.to_vec1()?;
|
|
let distr = rand::distributions::WeightedIndex::new(&logits_v)?;
|
|
let mut rng = rand::thread_rng();
|
|
distr.sample(&mut rng) as u32
|
|
} else {
|
|
let logits_v: Vec<f32> = logits.to_vec1()?;
|
|
logits_v
|
|
.iter()
|
|
.enumerate()
|
|
.max_by(|(_, u), (_, v)| u.total_cmp(v))
|
|
.map(|(i, _)| i as u32)
|
|
.unwrap()
|
|
};
|
|
tokens.push(next_token);
|
|
let prob = logits
|
|
.softmax(candle::D::Minus1)?
|
|
.get(next_token as usize)?
|
|
.to_scalar::<f32>()? as f64;
|
|
if next_token == EOT_TOKEN || tokens.len() > model.config.max_target_positions {
|
|
break;
|
|
}
|
|
sum_logprob += prob.ln();
|
|
}
|
|
let text = self
|
|
.tokenizer
|
|
.decode(tokens.clone(), true)
|
|
.map_err(E::msg)?;
|
|
let avg_logprob = sum_logprob / tokens.len() as f64;
|
|
|
|
Ok(DecodingResult {
|
|
tokens,
|
|
text,
|
|
avg_logprob,
|
|
no_speech_prob,
|
|
temperature: t,
|
|
compression_ratio: f64::NAN,
|
|
})
|
|
}
|
|
|
|
fn decode_with_fallback(&self, segment: &Tensor) -> anyhow::Result<DecodingResult> {
|
|
for (i, &t) in TEMPERATURES.iter().enumerate() {
|
|
let dr: Result<DecodingResult, _> = self.decode(segment, t);
|
|
if i == TEMPERATURES.len() - 1 {
|
|
return dr;
|
|
}
|
|
// On errors, we try again with a different temperature.
|
|
match dr {
|
|
Ok(dr) => {
|
|
let needs_fallback = dr.compression_ratio > COMPRESSION_RATIO_THRESHOLD
|
|
|| dr.avg_logprob < LOGPROB_THRESHOLD;
|
|
if !needs_fallback || dr.no_speech_prob > NO_SPEECH_THRESHOLD {
|
|
return Ok(dr);
|
|
}
|
|
}
|
|
Err(err) => {
|
|
console_log!("Error running at {t}: {err}")
|
|
}
|
|
}
|
|
}
|
|
unreachable!()
|
|
}
|
|
|
|
fn run(&self, mel: &Tensor) -> anyhow::Result<Vec<Segment>> {
|
|
let (_, _, content_frames) = mel.shape().r3()?;
|
|
let mut seek = 0;
|
|
let mut segments = vec![];
|
|
while seek < content_frames {
|
|
let time_offset = (seek * HOP_LENGTH) as f64 / SAMPLE_RATE as f64;
|
|
let segment_size = usize::min(content_frames - seek, N_FRAMES);
|
|
let mel_segment = mel.narrow(2, seek, segment_size)?;
|
|
let segment_duration = (segment_size * HOP_LENGTH) as f64 / SAMPLE_RATE as f64;
|
|
let dr = self.decode_with_fallback(&mel_segment)?;
|
|
seek += segment_size;
|
|
if dr.no_speech_prob > NO_SPEECH_THRESHOLD && dr.avg_logprob < LOGPROB_THRESHOLD {
|
|
console_log!("no speech detected, skipping {seek} {dr:?}");
|
|
continue;
|
|
}
|
|
let segment = Segment {
|
|
start: time_offset,
|
|
duration: segment_duration,
|
|
dr,
|
|
};
|
|
console_log!("{seek}: {segment:?}");
|
|
segments.push(segment)
|
|
}
|
|
Ok(segments)
|
|
}
|
|
|
|
async fn load() -> Result<Self, JsValue> {
|
|
let device = Device::Cpu;
|
|
let tokenizer_config = fetch_url("tokenizer.en.json").await?;
|
|
let tokenizer = Tokenizer::from_bytes(tokenizer_config).map_err(w)?;
|
|
|
|
let mel_filters = fetch_url("mel_filters.safetensors").await?;
|
|
let mel_filters = candle::safetensors::SafeTensors::from_buffer(&mel_filters).map_err(w)?;
|
|
let mel_filters = mel_filters.tensor("mel_80", &device).map_err(w)?;
|
|
console_log!("loaded mel filters {:?}", mel_filters.shape());
|
|
let mel_filters = mel_filters
|
|
.flatten_all()
|
|
.map_err(w)?
|
|
.to_vec1::<f32>()
|
|
.map_err(w)?;
|
|
let weights = fetch_url("tiny.en.safetensors").await?;
|
|
let weights = candle::safetensors::SafeTensors::from_buffer(&weights).map_err(w)?;
|
|
let vb = VarBuilder::from_safetensors(vec![weights], DTYPE, &device);
|
|
let config = Config::tiny_en();
|
|
let whisper = Whisper::load(&vb, config).map_err(w)?;
|
|
console_log!("done loading model");
|
|
let model = Decoder::new(whisper, tokenizer, mel_filters, &device).map_err(w)?;
|
|
Ok(model)
|
|
}
|
|
|
|
async fn load_and_run(&self, name: &str) -> Result<Vec<Segment>, JsValue> {
|
|
let device = Device::Cpu;
|
|
let wav_input = fetch_url(name).await?;
|
|
let mut wav_input = std::io::Cursor::new(wav_input);
|
|
let (header, data) = wav::read(&mut wav_input).map_err(w)?;
|
|
console_log!("loaded wav data: {header:?}");
|
|
if header.sampling_rate != SAMPLE_RATE as u32 {
|
|
Err(format!(
|
|
"wav file must have a {} sampling rate",
|
|
SAMPLE_RATE
|
|
))?
|
|
}
|
|
let data = data.as_sixteen().expect("expected 16 bit wav file");
|
|
let pcm_data: Vec<_> = data[..data.len() / header.channel_count as usize]
|
|
.iter()
|
|
.map(|v| *v as f32 / 32768.)
|
|
.collect();
|
|
console_log!("pcm data loaded {}", pcm_data.len());
|
|
let mel = crate::audio::pcm_to_mel(&pcm_data, &self.mel_filters).map_err(w)?;
|
|
let mel_len = mel.len();
|
|
let mel = Tensor::from_vec(mel, (1, N_MELS, mel_len / N_MELS), &device).map_err(w)?;
|
|
console_log!("loaded mel: {:?}", mel.dims());
|
|
|
|
let segments = self.run(&mel).map_err(w)?;
|
|
Ok(segments)
|
|
}
|
|
}
|
|
|
|
async fn fetch_url(url: &str) -> Result<Vec<u8>, JsValue> {
|
|
use web_sys::{Request, RequestCache, RequestInit, RequestMode, Response};
|
|
let window = web_sys::window().ok_or("window")?;
|
|
let mut opts = RequestInit::new();
|
|
let opts = opts
|
|
.method("GET")
|
|
.mode(RequestMode::Cors)
|
|
.cache(RequestCache::NoCache);
|
|
|
|
let request = Request::new_with_str_and_init(url, opts)?;
|
|
|
|
let resp_value = JsFuture::from(window.fetch_with_request(&request)).await?;
|
|
|
|
// `resp_value` is a `Response` object.
|
|
assert!(resp_value.is_instance_of::<Response>());
|
|
let resp: Response = resp_value.dyn_into()?;
|
|
let data = JsFuture::from(resp.blob()?).await?;
|
|
let blob = web_sys::Blob::from(data);
|
|
let array_buffer = JsFuture::from(blob.array_buffer()).await?;
|
|
let data = js_sys::Uint8Array::new(&array_buffer).to_vec();
|
|
Ok(data)
|
|
}
|
|
|
|
fn w<T: ToString>(x: T) -> String {
|
|
x.to_string()
|
|
}
|
|
|
|
pub enum Msg {
|
|
Run(usize),
|
|
UpdateStatus(String),
|
|
RunFinished(String),
|
|
SetDecoder(Decoder),
|
|
}
|
|
|
|
pub struct App {
|
|
status: String,
|
|
content: String,
|
|
decode_in_flight: bool,
|
|
decoder: Option<std::sync::Arc<Decoder>>,
|
|
}
|
|
|
|
impl Component for App {
|
|
type Message = Msg;
|
|
type Properties = ();
|
|
|
|
fn create(_ctx: &Context<Self>) -> Self {
|
|
let status = "loading weights".to_string();
|
|
Self {
|
|
status,
|
|
content: String::new(),
|
|
decode_in_flight: false,
|
|
decoder: None,
|
|
}
|
|
}
|
|
|
|
fn rendered(&mut self, ctx: &Context<Self>, first_render: bool) {
|
|
if first_render {
|
|
ctx.link().send_future(async {
|
|
match Decoder::load().await {
|
|
Err(err) => {
|
|
let status = format!("{err:?}");
|
|
Msg::UpdateStatus(status)
|
|
}
|
|
Ok(decoder) => Msg::SetDecoder(decoder),
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
fn update(&mut self, ctx: &Context<Self>, msg: Self::Message) -> bool {
|
|
match msg {
|
|
Msg::SetDecoder(decoder) => {
|
|
self.status = "weights loaded succesfully!".to_string();
|
|
self.decoder = Some(std::sync::Arc::new(decoder));
|
|
true
|
|
}
|
|
Msg::Run(sample_index) => {
|
|
let sample = SAMPLE_NAMES[sample_index];
|
|
match &self.decoder {
|
|
None => self.content = "waiting for weights to load".to_string(),
|
|
Some(decoder) => {
|
|
if self.decode_in_flight {
|
|
self.content = "already decoding some sample at the moment".to_string()
|
|
} else {
|
|
let decoder = decoder.clone();
|
|
self.decode_in_flight = true;
|
|
self.status = format!("decoding {sample}");
|
|
self.content = String::new();
|
|
ctx.link().send_future(async move {
|
|
let content = decoder.load_and_run(sample).await;
|
|
let content = match content {
|
|
Err(err) => format!("decoding error: {err:?}"),
|
|
Ok(segments) => format!("decoded succesfully: {segments:?}"),
|
|
};
|
|
Msg::RunFinished(content)
|
|
})
|
|
}
|
|
//
|
|
}
|
|
}
|
|
true
|
|
}
|
|
Msg::RunFinished(content) => {
|
|
self.status = "Run finished!".to_string();
|
|
self.content = content;
|
|
self.decode_in_flight = false;
|
|
true
|
|
}
|
|
Msg::UpdateStatus(status) => {
|
|
self.status = status;
|
|
true
|
|
}
|
|
}
|
|
}
|
|
|
|
fn view(&self, ctx: &Context<Self>) -> Html {
|
|
html! {
|
|
<div>
|
|
<table>
|
|
<thead>
|
|
<tr>
|
|
<th>{"Sample"}</th>
|
|
<th></th>
|
|
<th></th>
|
|
</tr>
|
|
</thead>
|
|
<tbody>
|
|
{
|
|
SAMPLE_NAMES.iter().enumerate().map(|(i, name)| { html! {
|
|
<tr>
|
|
<th>{name}</th>
|
|
<th><audio controls=true src={format!("./{name}")}></audio></th>
|
|
<th><button class="button" onclick={ctx.link().callback(move |_| Msg::Run(i))}> { "run" }</button></th>
|
|
</tr>
|
|
}
|
|
}).collect::<Html>()
|
|
}
|
|
</tbody>
|
|
</table>
|
|
<h2>
|
|
{&self.status}
|
|
</h2>
|
|
{
|
|
if self.decode_in_flight {
|
|
html! { <progress id="progress-bar" aria-label="decoding…"></progress> }
|
|
} else { html!{
|
|
<blockquote>
|
|
<p>
|
|
{&self.content}
|
|
</p>
|
|
</blockquote>
|
|
}
|
|
}
|
|
}
|
|
|
|
// Display the current date and time the page was rendered
|
|
<p class="footer">
|
|
{ "Rendered: " }
|
|
{ String::from(Date::new_0().to_string()) }
|
|
</p>
|
|
</div>
|
|
}
|
|
}
|
|
}
|