mirror of
https://github.com/huggingface/candle.git
synced 2025-06-14 09:57:10 +00:00

* Add some flash-attn kernel, import the code for flash-attn v2 from Dao-AILab. * More flash attn. * Set up the flash attn parameters. * Get things to compile locally. * Move the flash attention files in a different directory. * Build the static C library with nvcc. * Add more flash attention. * Update the build part. * Better caching. * Exclude flash attention from the default workspace. * Put flash-attn behind a feature gate. * Get the flash attn kernel to run. * Move the flags to a more appropriate place. * Enable flash attention in llama. * Use flash attention in llama.
273 lines
14 KiB
C++
273 lines
14 KiB
C++
/******************************************************************************
|
|
* Copyright (c) 2023, Tri Dao.
|
|
******************************************************************************/
|
|
|
|
#pragma once
|
|
|
|
#include <cmath>
|
|
|
|
#include <cute/tensor.hpp>
|
|
|
|
#include <cutlass/cutlass.h>
|
|
#include <cutlass/array.h>
|
|
|
|
#include "philox.cuh"
|
|
#include "utils.h"
|
|
|
|
namespace flash {
|
|
|
|
using namespace cute;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
|
|
__device__ inline void thread_reduce_(Tensor<Engine0, Layout0> const &tensor, Tensor<Engine1, Layout1> &summary, Operator &op) {
|
|
static_assert(Layout0::rank == 2, "Only support 2D Tensor");
|
|
static_assert(Layout1::rank == 1, "Only support 1D Tensor");
|
|
CUTE_STATIC_ASSERT_V(size<0>(summary) == size<0>(tensor));
|
|
#pragma unroll
|
|
for (int mi = 0; mi < size<0>(tensor); mi++) {
|
|
summary(mi) = zero_init ? tensor(mi, 0) : op(summary(mi), tensor(mi, 0));
|
|
#pragma unroll
|
|
for (int ni = 1; ni < size<1>(tensor); ni++) {
|
|
summary(mi) = op(summary(mi), tensor(mi, ni));
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
|
|
__device__ inline void quad_allreduce_(Tensor<Engine0, Layout0> &dst, Tensor<Engine1, Layout1> &src, Operator &op) {
|
|
CUTE_STATIC_ASSERT_V(size(dst) == size(src));
|
|
#pragma unroll
|
|
for (int i = 0; i < size(dst); i++){
|
|
dst(i) = Allreduce<4>::run(src(i), op);
|
|
}
|
|
}
|
|
|
|
template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
|
|
__device__ inline void reduce_(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &summary, Operator &op) {
|
|
thread_reduce_<zero_init>(tensor, summary, op);
|
|
quad_allreduce_(summary, summary, op);
|
|
}
|
|
|
|
template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
|
|
__device__ inline void reduce_max(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &max){
|
|
MaxOp<float> max_op;
|
|
reduce_<zero_init>(tensor, max, max_op);
|
|
}
|
|
|
|
template<typename Engine0, typename Layout0, typename Engine1, typename Layout1>
|
|
__device__ inline void reduce_sum(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &sum){
|
|
SumOp<float> sum_op;
|
|
reduce_(tensor, sum, sum_op);
|
|
}
|
|
|
|
// Apply the exp to all the elements.
|
|
template <bool Scale_max=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
|
|
inline __device__ void scale_apply_exp2(Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> const &max, const float scale) {
|
|
static_assert(Layout0::rank == 2, "Only support 2D Tensor");
|
|
static_assert(Layout1::rank == 1, "Only support 1D Tensor");
|
|
CUTE_STATIC_ASSERT_V(size<0>(max) == size<0>(tensor));
|
|
#pragma unroll
|
|
for (int mi = 0; mi < size<0>(tensor); ++mi) {
|
|
// If max is -inf, then all elements must have been -inf (possibly due to masking).
|
|
// We don't want (-inf - (-inf)) since that would give NaN.
|
|
// If we don't have float around M_LOG2E the multiplication is done in fp64.
|
|
const float max_scaled = max(mi) == -INFINITY ? 0.f : max(mi) * (Scale_max ? scale : float(M_LOG2E));
|
|
#pragma unroll
|
|
for (int ni = 0; ni < size<1>(tensor); ++ni) {
|
|
// Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
|
|
// max * log_2(e)) This allows the compiler to use the ffma
|
|
// instruction instead of fadd and fmul separately.
|
|
tensor(mi, ni) = exp2f(tensor(mi, ni) * scale - max_scaled);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Apply the exp to all the elements.
|
|
template <bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
|
|
inline __device__ void max_scale_exp2_sum(Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> &max, Tensor<Engine1, Layout1> &sum, const float scale) {
|
|
static_assert(Layout0::rank == 2, "Only support 2D Tensor");
|
|
static_assert(Layout1::rank == 1, "Only support 1D Tensor");
|
|
CUTE_STATIC_ASSERT_V(size<0>(max) == size<0>(tensor));
|
|
#pragma unroll
|
|
for (int mi = 0; mi < size<0>(tensor); ++mi) {
|
|
MaxOp<float> max_op;
|
|
max(mi) = zero_init ? tensor(mi, 0) : max_op(max(mi), tensor(mi, 0));
|
|
#pragma unroll
|
|
for (int ni = 1; ni < size<1>(tensor); ni++) {
|
|
max(mi) = max_op(max(mi), tensor(mi, ni));
|
|
}
|
|
max(mi) = Allreduce<4>::run(max(mi), max_op);
|
|
// If max is -inf, then all elements must have been -inf (possibly due to masking).
|
|
// We don't want (-inf - (-inf)) since that would give NaN.
|
|
const float max_scaled = max(mi) == -INFINITY ? 0.f : max(mi) * scale;
|
|
sum(mi) = 0;
|
|
#pragma unroll
|
|
for (int ni = 0; ni < size<1>(tensor); ++ni) {
|
|
// Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
|
|
// max * log_2(e)) This allows the compiler to use the ffma
|
|
// instruction instead of fadd and fmul separately.
|
|
tensor(mi, ni) = exp2f(tensor(mi, ni) * scale - max_scaled);
|
|
sum(mi) += tensor(mi, ni);
|
|
}
|
|
SumOp<float> sum_op;
|
|
sum(mi) = Allreduce<4>::run(sum(mi), sum_op);
|
|
}
|
|
}
|
|
|
|
template <typename Engine, typename Layout>
|
|
inline __device__ void apply_mask(Tensor<Engine, Layout> &tensor, const uint32_t max_seqlen_k) {
|
|
// tensor has shape (ncol=(2, MMA_M), nrow=(2, MMA_N))
|
|
static_assert(Layout::rank == 2, "Only support 2D Tensor");
|
|
const uint32_t lane_id = threadIdx.x % 32;
|
|
#pragma unroll
|
|
for (int nj = 0; nj < size<1, 1>(tensor); ++nj) {
|
|
#pragma unroll
|
|
for (int j = 0; j < size<1, 0>(tensor); ++j) {
|
|
const uint32_t col_idx = nj * 8 + j + (lane_id % 4) * 2;
|
|
if (col_idx >= max_seqlen_k) {
|
|
// Without the "make_coord" we get wrong results
|
|
#pragma unroll
|
|
for (int mi = 0; mi < size<0>(tensor); ++mi) {
|
|
tensor(mi, make_coord(j, nj)) = -INFINITY;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename Engine, typename Layout>
|
|
inline __device__ void apply_mask_causal(Tensor<Engine, Layout> &tensor, const uint32_t col_idx_offset_,
|
|
const uint32_t max_seqlen_k, const uint32_t row_idx_offset_,
|
|
const uint32_t warp_row_stride) {
|
|
// tensor has shape (ncol=(2, MMA_M), nrow=(2, MMA_N))
|
|
static_assert(Layout::rank == 2, "Only support 2D Tensor");
|
|
const uint32_t lane_id = threadIdx.x % 32;
|
|
// const uint32_t row_idx_offset = row_idx_offset_ + lane_id / 4;
|
|
const uint32_t row_idx_offset = row_idx_offset_;
|
|
const uint32_t col_idx_offset = col_idx_offset_ + (lane_id % 4) * 2;
|
|
#pragma unroll
|
|
for (int mi = 0; mi < size<0, 1>(tensor); ++mi) {
|
|
const uint32_t row_idx_base = row_idx_offset + mi * warp_row_stride;
|
|
#pragma unroll
|
|
for (int i = 0; i < size<0, 0>(tensor); ++i) {
|
|
const uint32_t row_idx = row_idx_base + i * 8;
|
|
const uint32_t col_idx_limit = std::min(max_seqlen_k, row_idx + 1);
|
|
#pragma unroll
|
|
for (int nj = 0; nj < size<1, 1>(tensor); ++nj) {
|
|
const uint32_t col_idx_base = col_idx_offset + nj * 8;
|
|
#pragma unroll
|
|
for (int j = 0; j < size<1, 0>(tensor); ++j) {
|
|
const uint32_t col_idx = col_idx_base + j;
|
|
if (col_idx >= col_idx_limit) {
|
|
tensor(make_coord(i, mi), make_coord(j, nj)) = -INFINITY;
|
|
}
|
|
}
|
|
}
|
|
// if (cute::thread0()) {
|
|
// printf("mi = %d, i = %d, row_idx = %d, max_seqlen_k = %d\n", mi, i, row_idx, max_seqlen_k);
|
|
// print(tensor(make_coord(i, mi), _));
|
|
// // print(tensor(_, j + nj * size<1, 0>(tensor)));
|
|
// }
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename Engine0, typename Layout0, typename Engine1, typename Layout1>
|
|
inline __device__ void apply_mask_causal_w_idx(
|
|
Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> const &idx_rowcol,
|
|
const uint32_t col_idx_offset_, const uint32_t max_seqlen_k, const uint32_t row_idx_offset_)
|
|
{
|
|
// tensor has shape (ncol=(2, MMA_M), nrow=(2, MMA_N))
|
|
static_assert(Layout0::rank == 2, "Only support 2D Tensor");
|
|
static_assert(Layout1::rank == 2, "Only support 2D Tensor");
|
|
CUTE_STATIC_ASSERT_V(size<0>(tensor) == size<0>(idx_rowcol));
|
|
CUTE_STATIC_ASSERT_V(size<1>(tensor) == size<1>(idx_rowcol));
|
|
#pragma unroll
|
|
for (int mi = 0; mi < size<0>(tensor); ++mi) {
|
|
const uint32_t col_idx_limit = std::min(max_seqlen_k, 1 + row_idx_offset_ + get<0>(idx_rowcol(mi, 0)));
|
|
#pragma unroll
|
|
for (int ni = 0; ni < size<1, 1>(tensor); ++ni) {
|
|
if (col_idx_offset_ + get<1>(idx_rowcol(0, ni)) >= col_idx_limit) {
|
|
tensor(mi, ni) = -INFINITY;
|
|
}
|
|
}
|
|
// if (cute::thread0()) {
|
|
// printf("ni = %d, j = %d, col_idx = %d, max_seqlen_k = %d\n", ni, j, col_idx, max_seqlen_k);
|
|
// print(tensor(_, make_coord(j, ni)));
|
|
// // print(tensor(_, j + ni * size<1, 0>(tensor)));
|
|
// }
|
|
}
|
|
}
|
|
|
|
template <bool encode_dropout_in_sign_bit=false, typename Engine, typename Layout>
|
|
inline __device__ void apply_dropout(Tensor<Engine, Layout> &tensor, uint8_t p_dropout_in_uint8_t,
|
|
unsigned long long seed, unsigned long long offset,
|
|
uint32_t block_row_start, uint32_t block_col_start,
|
|
uint32_t block_row_stride) {
|
|
// tensor has shape (8, MMA_M, MMA_N / 2)
|
|
using T = typename Engine::value_type;
|
|
auto encode_dropout = [](bool keep, T val) {
|
|
return keep ? val : (encode_dropout_in_sign_bit ? -val : T(0));
|
|
};
|
|
static_assert(decltype(size<2>(tensor))::value % 2 == 0);
|
|
const uint16_t p_dropout_8bit_in_uint16_t = uint16_t(p_dropout_in_uint8_t);
|
|
const uint32_t p_dropout_8bit_in_uint32_t = (uint32_t(p_dropout_8bit_in_uint16_t) << 16) | uint32_t(p_dropout_8bit_in_uint16_t);
|
|
// if (cute::thread0()) { printf("threshold2 = 0x%x\n", p_dropout_8bit_in_uint32_t); }
|
|
#pragma unroll
|
|
for (int m = 0; m < size<1>(tensor); ++m, block_row_start += block_row_stride) {
|
|
uint2 rowcol = make_uint2(block_row_start, block_col_start);
|
|
#pragma unroll
|
|
for (int n = 0; n < size<2>(tensor) / 2; ++n, ++rowcol.y) {
|
|
// if (cute::thread(32, 0)) { printf("m = %d, n = %d, row = %d, col = %d\n", m, n, int(rowcol.x), int(rowcol.y));}
|
|
uint4 random_uint4 = flash::philox(seed, reinterpret_cast<unsigned long long&>(rowcol), offset);
|
|
// if (cute::thread0()) { printf("philox = %u, %d, %d, %d\n", random_uint4.x, random_uint4.y, random_uint4.z, random_uint4.w);}
|
|
uint8_t (&rnd_8)[16] = reinterpret_cast<uint8_t (&)[16]>(random_uint4);
|
|
// Special implementation for 16-bit types: we duplicate the threshold to the
|
|
// low and high 16 bits of a 32-bit value, then use the f16x2 comparison instruction
|
|
// to get a mask. The low 16 bits of the mask will be either 0xffff or 0x0000,
|
|
// and the high 16 bits will be either 0xffff or 0x0000, depending on whether
|
|
// the random value is less than the threshold.
|
|
// We then do a bit-wise AND between the mask and the original value (in 32-bit).
|
|
// We're exploiting the fact that floating point comparison is equivalent to integer
|
|
// comparison, since we're comparing unsigned integers whose top 8-bits are zero.
|
|
if (!encode_dropout_in_sign_bit
|
|
&& (std::is_same<T, cutlass::half_t>::value || std::is_same<T, cutlass::bfloat16_t>::value)) {
|
|
uint16_t rnd_16[16];
|
|
#pragma unroll
|
|
for (int i = 0; i < 16; i++) { rnd_16[i] = uint16_t(rnd_8[i]); }
|
|
uint32_t (&rnd_32)[8] = reinterpret_cast<uint32_t (&)[8]>(rnd_16);
|
|
#pragma unroll
|
|
for (int j = 0; j < 2; j++) {
|
|
Tensor tensor_uint32 = recast<uint32_t>(tensor(_, m, n * 2 + j));
|
|
// if (cute::thread0()) { printf("random = 0x%x, 0x%x, 0x%x, 0x%x\n", rnd_32[j * 4 + 0], rnd_32[j * 4 + 1], rnd_32[j * 4 + 2], rnd_32[j * 4 + 3]); }
|
|
// if (cute::thread0()) { printf("tensor_uint32 = 0x%x, 0x%x, 0x%x, 0x%x\n", tensor_uint32(0), tensor_uint32(1), tensor_uint32(2), tensor_uint32(3)); }
|
|
#pragma unroll
|
|
for (int i = 0; i < 4; i++) {
|
|
uint32_t mask;
|
|
asm volatile("set.le.u32.f16x2 %0, %1, %2;\n" : "=r"(mask) : "r"(rnd_32[j * 4 + i]), "r"(p_dropout_8bit_in_uint32_t));
|
|
tensor_uint32(i) &= mask;
|
|
}
|
|
// if (cute::thread0()) { printf("tensor_uint32 = 0x%x, 0x%x, 0x%x, 0x%x\n", tensor_uint32(0), tensor_uint32(1), tensor_uint32(2), tensor_uint32(3)); }
|
|
}
|
|
} else {
|
|
#pragma unroll
|
|
for (int j = 0; j < 2; j++) {
|
|
#pragma unroll
|
|
for (int i = 0; i < 8; i++) {
|
|
tensor(i, m, n * 2 + j) = encode_dropout(rnd_8[j * 8 + i] <= p_dropout_in_uint8_t, tensor(i, m, n * 2 + j));
|
|
}
|
|
Tensor tensor_uint32 = recast<uint32_t>(tensor(_, m, n * 2 + j));
|
|
// if (cute::thread0()) { printf("tensor_uint32 = 0x%x, 0x%x, 0x%x, 0x%x\n", tensor_uint32(0), tensor_uint32(1), tensor_uint32(2), tensor_uint32(3)); }
|
|
}
|
|
}
|
|
// // if ((threadIdx.x == 0) && (blockIdx.x == 0) && (blockIdx.y == 0)) {
|
|
// // printf("n = %d, ph Philox: %u, %u, %u, %u\n", n, rnd_8.x, rnd_8.y, rnd_8.z, rnd_8.w);
|
|
// // }
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace flash
|