mirror of
https://github.com/huggingface/candle.git
synced 2025-06-21 12:20:46 +00:00

* Use cat for faster MQA computation. * Move the function to utils + use it in mistral. * Use the shared repeat-kv in a few more models. * Fix.
37 lines
1.3 KiB
Rust
37 lines
1.3 KiB
Rust
use candle::{Result, Tensor};
|
|
|
|
pub fn apply_repeat_penalty(logits: &Tensor, penalty: f32, context: &[u32]) -> Result<Tensor> {
|
|
let device = logits.device();
|
|
let mut logits = logits.to_dtype(candle::DType::F32)?.to_vec1::<f32>()?;
|
|
let mut already_seen = std::collections::HashSet::new();
|
|
for token_id in context {
|
|
if already_seen.contains(token_id) {
|
|
continue;
|
|
}
|
|
already_seen.insert(token_id);
|
|
if let Some(logit) = logits.get_mut(*token_id as usize) {
|
|
if *logit >= 0. {
|
|
*logit /= penalty
|
|
} else {
|
|
*logit *= penalty
|
|
}
|
|
}
|
|
}
|
|
let logits_len = logits.len();
|
|
Tensor::from_vec(logits, logits_len, device)
|
|
}
|
|
|
|
/// Repeats a key or value tensor for grouped query attention
|
|
/// The input tensor should have a shape `(batch, num_kv_heads, seq_len, head_dim)`,
|
|
pub fn repeat_kv(xs: Tensor, n_rep: usize) -> Result<Tensor> {
|
|
if n_rep == 1 {
|
|
Ok(xs)
|
|
} else {
|
|
let (b_sz, n_kv_head, seq_len, head_dim) = xs.dims4()?;
|
|
// Using cat is faster than a broadcast as it avoids going through a potentially
|
|
// strided copy.
|
|
// https://github.com/huggingface/candle/pull/2043
|
|
Tensor::cat(&vec![&xs; n_rep], 2)?.reshape((b_sz, n_kv_head * n_rep, seq_len, head_dim))
|
|
}
|
|
}
|