Files
candle/candle-examples/examples/stable-diffusion/ddim.rs
Laurent Mazare 72ebb12bca Remove some dead-code annotations. (#629)
* Remove some dead-code annotations.

* More dead code removal.

* One more.

* CI fix.
2023-08-27 18:52:33 +01:00

170 lines
6.4 KiB
Rust

//! # Denoising Diffusion Implicit Models
//!
//! The Denoising Diffusion Implicit Models (DDIM) is a simple scheduler
//! similar to Denoising Diffusion Probabilistic Models (DDPM). The DDPM
//! generative process is the reverse of a Markovian process, DDIM generalizes
//! this to non-Markovian guidance.
//!
//! Denoising Diffusion Implicit Models, J. Song et al, 2020.
//! https://arxiv.org/abs/2010.02502
use crate::schedulers::{betas_for_alpha_bar, BetaSchedule, PredictionType};
use candle::{Result, Tensor};
/// The configuration for the DDIM scheduler.
#[derive(Debug, Clone, Copy)]
pub struct DDIMSchedulerConfig {
/// The value of beta at the beginning of training.
pub beta_start: f64,
/// The value of beta at the end of training.
pub beta_end: f64,
/// How beta evolved during training.
pub beta_schedule: BetaSchedule,
/// The amount of noise to be added at each step.
pub eta: f64,
/// Adjust the indexes of the inference schedule by this value.
pub steps_offset: usize,
/// prediction type of the scheduler function, one of `epsilon` (predicting
/// the noise of the diffusion process), `sample` (directly predicting the noisy sample`)
/// or `v_prediction` (see section 2.4 https://imagen.research.google/video/paper.pdf)
pub prediction_type: PredictionType,
/// number of diffusion steps used to train the model
pub train_timesteps: usize,
}
impl Default for DDIMSchedulerConfig {
fn default() -> Self {
Self {
beta_start: 0.00085f64,
beta_end: 0.012f64,
beta_schedule: BetaSchedule::ScaledLinear,
eta: 0.,
steps_offset: 1,
prediction_type: PredictionType::Epsilon,
train_timesteps: 1000,
}
}
}
/// The DDIM scheduler.
#[derive(Debug, Clone)]
pub struct DDIMScheduler {
timesteps: Vec<usize>,
alphas_cumprod: Vec<f64>,
step_ratio: usize,
init_noise_sigma: f64,
pub config: DDIMSchedulerConfig,
}
// clip_sample: False, set_alpha_to_one: False
impl DDIMScheduler {
/// Creates a new DDIM scheduler given the number of steps to be
/// used for inference as well as the number of steps that was used
/// during training.
pub fn new(inference_steps: usize, config: DDIMSchedulerConfig) -> Result<Self> {
let step_ratio = config.train_timesteps / inference_steps;
let timesteps: Vec<usize> = (0..(inference_steps))
.map(|s| s * step_ratio + config.steps_offset)
.rev()
.collect();
let betas = match config.beta_schedule {
BetaSchedule::ScaledLinear => crate::utils::linspace(
config.beta_start.sqrt(),
config.beta_end.sqrt(),
config.train_timesteps,
)?
.sqr()?,
BetaSchedule::Linear => {
crate::utils::linspace(config.beta_start, config.beta_end, config.train_timesteps)?
}
BetaSchedule::SquaredcosCapV2 => betas_for_alpha_bar(config.train_timesteps, 0.999)?,
};
let betas = betas.to_vec1::<f64>()?;
let mut alphas_cumprod = Vec::with_capacity(betas.len());
for &beta in betas.iter() {
let alpha = 1.0 - beta;
alphas_cumprod.push(alpha * *alphas_cumprod.last().unwrap_or(&1f64))
}
Ok(Self {
alphas_cumprod,
timesteps,
step_ratio,
init_noise_sigma: 1.,
config,
})
}
pub fn timesteps(&self) -> &[usize] {
self.timesteps.as_slice()
}
/// Ensures interchangeability with schedulers that need to scale the denoising model input
/// depending on the current timestep.
pub fn scale_model_input(&self, sample: Tensor, _timestep: usize) -> Result<Tensor> {
Ok(sample)
}
/// Performs a backward step during inference.
pub fn step(&self, model_output: &Tensor, timestep: usize, sample: &Tensor) -> Result<Tensor> {
let timestep = if timestep >= self.alphas_cumprod.len() {
timestep - 1
} else {
timestep
};
// https://github.com/huggingface/diffusers/blob/6e099e2c8ce4c4f5c7318e970a8c093dc5c7046e/src/diffusers/schedulers/scheduling_ddim.py#L195
let prev_timestep = if timestep > self.step_ratio {
timestep - self.step_ratio
} else {
0
};
let alpha_prod_t = self.alphas_cumprod[timestep];
let alpha_prod_t_prev = self.alphas_cumprod[prev_timestep];
let beta_prod_t = 1. - alpha_prod_t;
let beta_prod_t_prev = 1. - alpha_prod_t_prev;
let (pred_original_sample, pred_epsilon) = match self.config.prediction_type {
PredictionType::Epsilon => {
let pred_original_sample = ((sample - (model_output * beta_prod_t.sqrt())?)?
* (1. / alpha_prod_t.sqrt()))?;
(pred_original_sample, model_output.clone())
}
PredictionType::VPrediction => {
let pred_original_sample =
((sample * alpha_prod_t.sqrt())? - (model_output * beta_prod_t.sqrt())?)?;
let pred_epsilon =
((model_output * alpha_prod_t.sqrt())? + (sample * beta_prod_t.sqrt())?)?;
(pred_original_sample, pred_epsilon)
}
PredictionType::Sample => {
let pred_original_sample = model_output.clone();
let pred_epsilon = ((sample - &pred_original_sample * alpha_prod_t.sqrt())?
* (1. / beta_prod_t.sqrt()))?;
(pred_original_sample, pred_epsilon)
}
};
let variance = (beta_prod_t_prev / beta_prod_t) * (1. - alpha_prod_t / alpha_prod_t_prev);
let std_dev_t = self.config.eta * variance.sqrt();
let pred_sample_direction =
(pred_epsilon * (1. - alpha_prod_t_prev - std_dev_t * std_dev_t).sqrt())?;
let prev_sample =
((pred_original_sample * alpha_prod_t_prev.sqrt())? + pred_sample_direction)?;
if self.config.eta > 0. {
&prev_sample
+ Tensor::randn(
0f32,
std_dev_t as f32,
prev_sample.shape(),
prev_sample.device(),
)?
} else {
Ok(prev_sample)
}
}
pub fn init_noise_sigma(&self) -> f64 {
self.init_noise_sigma
}
}