Files
candle/candle-core/examples/cuda_basics.rs
Laurent Mazare a044907ffc Dilated convolutions (#657)
* Add the dilation parameter.

* Restore the basic optimizer example.

* Dilation support in cudnn.

* Use the dilation parameter in the cpu backend.

* More dilation support.

* No support for dilation in transposed convolutions.

* Add dilation to a test.

* Remove a print.

* Helper function.
2023-08-29 16:12:11 +01:00

30 lines
908 B
Rust

#[cfg(feature = "accelerate")]
extern crate accelerate_src;
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
use anyhow::Result;
use candle_core::{Device, Tensor};
fn main() -> Result<()> {
let device = Device::new_cuda(0)?;
let in_t = Tensor::rand(-1f32, 1f32, (1, 3, 12, 7), &device)?;
let k_t = Tensor::rand(-1f32, 1f32, (6, 3, 1, 1), &device)?;
let out_t = in_t.conv2d(&k_t, 0, 1, 1, 1)?;
println!("{out_t}");
let in_t = in_t.to_device(&Device::Cpu)?;
let k_t = k_t.to_device(&Device::Cpu)?;
let out_t2 = in_t.conv2d(&k_t, 0, 1, 1, 1)?;
let diff = (out_t.to_device(&Device::Cpu)? - out_t2)?
.sqr()?
.sum_all()?;
println!("{diff}");
let t = Tensor::randn(0f32, 1f32, (2, 4, 96, 96), &device)?;
let w = Tensor::randn(0f32, 1f32, (320, 4, 3, 3), &device)?;
let res = t.conv2d(&w, 1, 1, 1, 1)?;
println!("{res:?}");
Ok(())
}