Files
candle/candle-examples/examples/segment-anything/main.rs
Laurent Mazare e5703d2f56 Draw the mask on a merged image. (#775)
* Draw the mask on a merged image.

* Clippy fix.

* Enable the target point by default.

* Add to the readme.
2023-09-08 14:04:34 +01:00

224 lines
6.9 KiB
Rust

//! SAM: Segment Anything Model
//! https://github.com/facebookresearch/segment-anything
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
pub mod model_image_encoder;
pub mod model_mask_decoder;
pub mod model_prompt_encoder;
pub mod model_sam;
pub mod model_transformer;
use candle::{DType, Result, Tensor};
use candle_nn::{Linear, Module, VarBuilder};
use clap::Parser;
pub fn linear(vb: VarBuilder, in_dim: usize, out_dim: usize, bias: bool) -> Result<Linear> {
if bias {
candle_nn::linear(in_dim, out_dim, vb)
} else {
candle_nn::linear_no_bias(in_dim, out_dim, vb)
}
}
#[derive(Debug)]
pub struct LayerNorm2d {
weight: Tensor,
bias: Tensor,
num_channels: usize,
eps: f64,
}
impl LayerNorm2d {
pub fn new(num_channels: usize, eps: f64, vb: VarBuilder) -> Result<Self> {
let weight = vb.get(num_channels, "weight")?;
let bias = vb.get(num_channels, "bias")?;
Ok(Self {
weight,
bias,
num_channels,
eps,
})
}
}
impl Module for LayerNorm2d {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let u = xs.mean_keepdim(1)?;
let xs = xs.broadcast_sub(&u)?;
let s = xs.sqr()?.mean_keepdim(1)?;
let xs = xs.broadcast_div(&(s + self.eps)?.sqrt()?)?;
xs.broadcast_mul(&self.weight.reshape((1, self.num_channels, 1, 1))?)?
.broadcast_add(&self.bias.reshape((1, self.num_channels, 1, 1))?)
}
}
#[derive(Debug)]
pub struct MlpBlock {
lin1: Linear,
lin2: Linear,
activation: candle_nn::Activation,
}
impl MlpBlock {
pub fn new(
embedding_dim: usize,
mlp_dim: usize,
activation: candle_nn::Activation,
vb: VarBuilder,
) -> Result<Self> {
let lin1 = candle_nn::linear(embedding_dim, mlp_dim, vb.pp("lin1"))?;
let lin2 = candle_nn::linear(mlp_dim, embedding_dim, vb.pp("lin2"))?;
Ok(Self {
lin1,
lin2,
activation,
})
}
}
impl Module for MlpBlock {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
xs.apply(&self.lin1)?
.apply(&self.activation)?
.apply(&self.lin2)
}
}
#[derive(Parser)]
struct Args {
#[arg(long)]
model: Option<String>,
#[arg(long)]
image: String,
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
#[arg(long)]
generate_masks: bool,
#[arg(long, default_value_t = 0.5)]
point_x: f64,
#[arg(long, default_value_t = 0.5)]
point_y: f64,
}
pub fn main() -> anyhow::Result<()> {
let args = Args::parse();
let device = candle_examples::device(args.cpu)?;
let (image, initial_h, initial_w) = if args.image.ends_with(".safetensors") {
let mut tensors = candle::safetensors::load(&args.image, &device)?;
let image = match tensors.remove("image") {
Some(image) => image,
None => {
if tensors.len() != 1 {
anyhow::bail!("multiple tensors in '{}'", args.image)
}
tensors.into_values().next().unwrap()
}
};
let image = if image.rank() == 4 {
image.get(0)?
} else {
image
};
let (_c, h, w) = image.dims3()?;
(image, h, w)
} else {
let (image, h, w) = candle_examples::load_image(&args.image, Some(model_sam::IMAGE_SIZE))?;
(image.to_device(&device)?, h, w)
};
println!("loaded image {image:?}");
let model = match args.model {
Some(model) => std::path::PathBuf::from(model),
None => {
let api = hf_hub::api::sync::Api::new()?;
let api = api.model("lmz/candle-sam".to_string());
api.get("sam_vit_b_01ec64.safetensors")?
}
};
let weights = unsafe { candle::safetensors::MmapedFile::new(model)? };
let weights = weights.deserialize()?;
let vb = VarBuilder::from_safetensors(vec![weights], DType::F32, &device);
let sam = model_sam::Sam::new(768, 12, 12, &[2, 5, 8, 11], vb)?; // sam_vit_b
if args.generate_masks {
// Default options similar to the Python version.
sam.generate_masks(
&image,
/* points_per_side */ 32,
/* crop_n_layer */ 0,
/* crop_overlap_ratio */ 512. / 1500.,
/* crop_n_points_downscale_factor */ 1,
)?
} else {
let point = Some((args.point_x, args.point_y));
let (mask, iou_predictions) = sam.forward(&image, point, false)?;
println!("mask:\n{mask}");
println!("iou_predictions: {iou_predictions:?}");
// Save the mask as an image.
let mask = (mask.ge(&mask.zeros_like()?)? * 255.)?;
let (_one, h, w) = mask.dims3()?;
let mask = mask.expand((3, h, w))?;
candle_examples::save_image_resize(&mask, "sam_mask.png", initial_h, initial_w)?;
if !args.image.ends_with(".safetensors") {
let mut img = image::io::Reader::open(&args.image)?
.decode()
.map_err(candle::Error::wrap)?;
let mask_pixels = mask.permute((1, 2, 0))?.flatten_all()?.to_vec1::<u8>()?;
let mask_img: image::ImageBuffer<image::Rgb<u8>, Vec<u8>> =
match image::ImageBuffer::from_raw(w as u32, h as u32, mask_pixels) {
Some(image) => image,
None => anyhow::bail!("error saving merged image"),
};
let mask_img = image::DynamicImage::from(mask_img).resize_to_fill(
img.width(),
img.height(),
image::imageops::FilterType::CatmullRom,
);
for x in 0..img.width() {
for y in 0..img.height() {
let mask_p = imageproc::drawing::Canvas::get_pixel(&mask_img, x, y);
if mask_p.0[0] > 100 {
let mut img_p = imageproc::drawing::Canvas::get_pixel(&img, x, y);
img_p.0[2] = 255 - (255 - img_p.0[2]) / 2;
img_p.0[1] /= 2;
img_p.0[0] /= 2;
imageproc::drawing::Canvas::draw_pixel(&mut img, x, y, img_p)
}
}
}
match point {
Some((x, y)) => {
let (x, y) = (
(x * img.width() as f64) as i32,
(y * img.height() as f64) as i32,
);
imageproc::drawing::draw_filled_circle(
&img,
(x, y),
3,
image::Rgba([255, 0, 0, 200]),
)
.save("sam_merged.jpg")?
}
None => img.save("sam_merged.jpg")?,
};
}
}
Ok(())
}