Files
candle/candle-nn/tests/layer_norm.rs
2025-03-28 10:13:13 +01:00

56 lines
1.7 KiB
Rust

#[cfg(feature = "_mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::Result;
use candle::{test_utils, Device, Tensor};
use candle_nn::{LayerNorm, Module};
#[test]
fn layer_norm() -> Result<()> {
let device = &Device::Cpu;
let w = Tensor::new(&[3f32], device)?;
let b = Tensor::new(&[0.5f32], device)?;
let ln2 = LayerNorm::new(Tensor::cat(&[&w, &w], 0)?, Tensor::cat(&[&b, &b], 0)?, 1e-8);
let ln3 = LayerNorm::new(
Tensor::cat(&[&w, &w, &w], 0)?,
Tensor::cat(&[&b, &b, &b], 0)?,
1e-8,
);
let ln = LayerNorm::new(w, b, 1e-8);
let two = Tensor::new(&[[[2f32]]], device)?;
let res = ln.forward(&two)?.flatten_all()?;
assert_eq!(res.to_vec1::<f32>()?, [0.5f32]);
let inp = Tensor::new(&[[[4f32, 0f32]]], device)?;
let res = ln2.forward(&inp)?;
assert_eq!(res.to_vec3::<f32>()?, [[[3.5f32, -2.5]]]);
let inp = Tensor::new(&[[[1f32, 2., 3.], [4., 5., 6.], [9., 8., 7.]]], device)?;
let res = ln3.forward(&inp)?;
assert_eq!(
test_utils::to_vec3_round(&res, 4)?,
[[
[-3.1742, 0.5, 4.1742],
[-3.1742, 0.5, 4.1742],
[4.1742, 0.5, -3.1742]
]]
);
let mean = (res.sum_keepdim(2)? / 3.0)?;
// The average value should be `b`.
assert_eq!(
test_utils::to_vec3_round(&mean, 4)?,
[[[0.5], [0.5], [0.5]]]
);
let std = (res.broadcast_sub(&mean)?.sqr()?.sum_keepdim(2)?.sqrt()? / 3.0)?;
// The standard deviation should be sqrt(`w`).
assert_eq!(
test_utils::to_vec3_round(&std, 4)?,
[[[1.7321], [1.7321], [1.7321]]]
);
Ok(())
}