mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 19:18:50 +00:00

* links in chinese_clip * links for clip model * add mod docs for flux and llava * module doc for MMDIT and MIMI * add docs for a few more modesl * mod docs for bert naser and beit * add module docs for convmixer colpali codegeex and chatglm * add another series of moddocs * add fastvit-llama2_c * module docs mamba -> mobileone * module docs from moondream-phi3 * mod docs for quantized and qwen * update to yi * fix long names * Update llama2_c.rs * Update llama2_c_weights.rs * Fix the link for mimi + tweaks --------- Co-authored-by: Laurent Mazare <laurent.mazare@gmail.com>
339 lines
12 KiB
Rust
339 lines
12 KiB
Rust
//! Qwen2 model implementation with quantization support.
|
|
//!
|
|
//! Qwen2 is a chat-optimized language model that supports 8-bit quantization
|
|
//! for reduced memory usage and faster inference.
|
|
//!
|
|
//! Key characteristics:
|
|
//! - Group Query Attention (GQA)
|
|
//! - RMSNorm for layer normalization
|
|
//! - Rotary positional embeddings (RoPE)
|
|
//! - Support for 8-bit quantization
|
|
//!
|
|
//! References:
|
|
//! - [Model Card](https://huggingface.co/Qwen/Qwen2)
|
|
//!
|
|
|
|
use crate::{quantized_nn::RmsNorm, utils::repeat_kv};
|
|
use candle::{
|
|
quantized::{gguf_file, QMatMul},
|
|
DType, Device, IndexOp, Result, Tensor,
|
|
};
|
|
use candle_nn::{Embedding, Module};
|
|
use std::collections::HashMap;
|
|
|
|
#[derive(Debug, Clone)]
|
|
struct Mlp {
|
|
feed_forward_w1: QMatMul,
|
|
feed_forward_w2: QMatMul,
|
|
feed_forward_w3: QMatMul,
|
|
}
|
|
|
|
impl Module for Mlp {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
let w1 = self.feed_forward_w1.forward(xs)?;
|
|
let w3 = self.feed_forward_w3.forward(xs)?;
|
|
self.feed_forward_w2
|
|
.forward(&(candle_nn::ops::silu(&w1)? * w3)?)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
struct LayerWeights {
|
|
attention_wq: QMatMul,
|
|
attention_wk: QMatMul,
|
|
attention_wv: QMatMul,
|
|
attention_bq: Tensor,
|
|
attention_bk: Tensor,
|
|
attention_bv: Tensor,
|
|
attention_wo: QMatMul,
|
|
attention_norm: RmsNorm,
|
|
mlp: Mlp,
|
|
ffn_norm: RmsNorm,
|
|
n_head: usize,
|
|
n_kv_head: usize,
|
|
head_dim: usize,
|
|
cos: Tensor,
|
|
sin: Tensor,
|
|
neg_inf: Tensor,
|
|
kv_cache: Option<(Tensor, Tensor)>,
|
|
span_attn: tracing::Span,
|
|
span_rot: tracing::Span,
|
|
span_mlp: tracing::Span,
|
|
}
|
|
|
|
fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: &Tensor) -> Result<Tensor> {
|
|
let shape = mask.shape();
|
|
let m = mask.where_cond(&on_true.broadcast_as(shape.dims())?, on_false)?;
|
|
Ok(m)
|
|
}
|
|
|
|
impl LayerWeights {
|
|
fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
|
|
let _enter = self.span_rot.enter();
|
|
let (_b_sz, _n_head, seq_len, _n_embd) = x.dims4()?;
|
|
let cos = self.cos.narrow(0, index_pos, seq_len)?;
|
|
let sin = self.sin.narrow(0, index_pos, seq_len)?;
|
|
candle_nn::rotary_emb::rope(&x.contiguous()?, &cos, &sin)
|
|
}
|
|
|
|
fn forward_attn(
|
|
&mut self,
|
|
x: &Tensor,
|
|
mask: Option<&Tensor>,
|
|
index_pos: usize,
|
|
) -> Result<Tensor> {
|
|
let _enter = self.span_attn.enter();
|
|
let (b_sz, seq_len, n_embd) = x.dims3()?;
|
|
|
|
let q = self.attention_wq.forward(x)?;
|
|
let k = self.attention_wk.forward(x)?;
|
|
let v = self.attention_wv.forward(x)?;
|
|
|
|
let q = q.broadcast_add(&self.attention_bq)?;
|
|
let k = k.broadcast_add(&self.attention_bk)?;
|
|
let v = v.broadcast_add(&self.attention_bv)?;
|
|
|
|
let q = q
|
|
.reshape((b_sz, seq_len, self.n_head, self.head_dim))?
|
|
.transpose(1, 2)?
|
|
.contiguous()?;
|
|
let k = k
|
|
.reshape((b_sz, seq_len, self.n_kv_head, self.head_dim))?
|
|
.transpose(1, 2)?
|
|
.contiguous()?;
|
|
let v = v
|
|
.reshape((b_sz, seq_len, self.n_kv_head, self.head_dim))?
|
|
.transpose(1, 2)?
|
|
.contiguous()?;
|
|
|
|
// let (q, k) = self
|
|
// .rotary_embedding
|
|
// .apply_rotary_emb_qkv(&q, &k, index_pos)?;
|
|
let q = self.apply_rotary_emb(&q, index_pos)?;
|
|
let k = self.apply_rotary_emb(&k, index_pos)?;
|
|
|
|
let (k, v) = match &self.kv_cache {
|
|
None => (k, v),
|
|
Some((k_cache, v_cache)) => {
|
|
if index_pos == 0 {
|
|
(k, v)
|
|
} else {
|
|
let k = Tensor::cat(&[k_cache, &k], 2)?;
|
|
let v = Tensor::cat(&[v_cache, &v], 2)?;
|
|
(k, v)
|
|
}
|
|
}
|
|
};
|
|
self.kv_cache = Some((k.clone(), v.clone()));
|
|
|
|
// Support for MQA, useful for 70B models and mistral.
|
|
let k = repeat_kv(k, self.n_head / self.n_kv_head)?;
|
|
let v = repeat_kv(v, self.n_head / self.n_kv_head)?;
|
|
|
|
let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
|
|
let att = match mask {
|
|
None => att,
|
|
Some(mask) => {
|
|
let mask = mask.broadcast_as(att.shape())?;
|
|
masked_fill(&att, &mask, &self.neg_inf)?
|
|
}
|
|
};
|
|
let att = candle_nn::ops::softmax_last_dim(&att)?;
|
|
// Convert to contiguous as matmul doesn't support strided vs for now.
|
|
let y = att.matmul(&v.contiguous()?)?;
|
|
let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?;
|
|
let y = self.attention_wo.forward(&y)?;
|
|
Ok(y)
|
|
}
|
|
}
|
|
|
|
pub struct ModelWeights {
|
|
tok_embeddings: Embedding,
|
|
layers: Vec<LayerWeights>,
|
|
norm: RmsNorm,
|
|
output: QMatMul,
|
|
masks: HashMap<usize, Tensor>,
|
|
span: tracing::Span,
|
|
span_output: tracing::Span,
|
|
}
|
|
|
|
fn precomput_freqs_cis(
|
|
head_dim: usize,
|
|
freq_base: f32,
|
|
context_length: usize,
|
|
device: &Device,
|
|
) -> Result<(Tensor, Tensor)> {
|
|
let theta: Vec<_> = (0..head_dim)
|
|
.step_by(2)
|
|
.map(|i| 1f32 / freq_base.powf(i as f32 / head_dim as f32))
|
|
.collect();
|
|
let theta = Tensor::new(theta.as_slice(), device)?;
|
|
let idx_theta = Tensor::arange(0, context_length as u32, device)?
|
|
.to_dtype(DType::F32)?
|
|
.reshape((context_length, 1))?
|
|
.matmul(&theta.reshape((1, theta.elem_count()))?)?;
|
|
let cos = idx_theta.cos()?;
|
|
let sin = idx_theta.sin()?;
|
|
Ok((cos, sin))
|
|
}
|
|
|
|
impl ModelWeights {
|
|
pub fn from_gguf<R: std::io::Seek + std::io::Read>(
|
|
ct: gguf_file::Content,
|
|
reader: &mut R,
|
|
device: &Device,
|
|
) -> Result<Self> {
|
|
let md_get = |s: &str| match ct.metadata.get(s) {
|
|
None => candle::bail!("cannot find {s} in metadata"),
|
|
Some(v) => Ok(v),
|
|
};
|
|
|
|
let head_count = md_get("qwen2.attention.head_count")?.to_u32()? as usize;
|
|
let head_count_kv = md_get("qwen2.attention.head_count_kv")?.to_u32()? as usize;
|
|
let embedding_length = md_get("qwen2.embedding_length")?.to_u32()? as usize;
|
|
let context_length = md_get("qwen2.context_length")?.to_u32()? as usize;
|
|
let block_count = md_get("qwen2.block_count")?.to_u32()? as usize;
|
|
let rms_norm_eps = md_get("qwen2.attention.layer_norm_rms_epsilon")?.to_f32()? as f64;
|
|
let rope_freq_base = md_get("qwen2.rope.freq_base")
|
|
.and_then(|m| m.to_f32())
|
|
.unwrap_or(10000f32);
|
|
|
|
let head_dim = embedding_length / head_count;
|
|
|
|
let neg_inf = Tensor::new(f32::NEG_INFINITY, device)?;
|
|
|
|
let tok_embeddings = ct.tensor(reader, "token_embd.weight", device)?;
|
|
let tok_embeddings = tok_embeddings.dequantize(device)?;
|
|
let norm = RmsNorm::from_qtensor(
|
|
ct.tensor(reader, "output_norm.weight", device)?,
|
|
rms_norm_eps,
|
|
)?;
|
|
let output = match ct.tensor(reader, "output.weight", device) {
|
|
Ok(v) => QMatMul::from_qtensor(v)?,
|
|
_ => {
|
|
// use tie_word_embeddings
|
|
QMatMul::from_qtensor(ct.tensor(reader, "token_embd.weight", device)?)?
|
|
}
|
|
};
|
|
|
|
let (cos, sin) = precomput_freqs_cis(head_dim, rope_freq_base, context_length, device)?;
|
|
|
|
let mut layers = Vec::with_capacity(block_count);
|
|
|
|
for layer_idx in 0..block_count {
|
|
let prefix = format!("blk.{layer_idx}");
|
|
let attention_wq = ct.tensor(reader, &format!("{prefix}.attn_q.weight"), device)?;
|
|
let attention_wk = ct.tensor(reader, &format!("{prefix}.attn_k.weight"), device)?;
|
|
let attention_wv = ct.tensor(reader, &format!("{prefix}.attn_v.weight"), device)?;
|
|
|
|
let attention_bq = ct.tensor(reader, &format!("{prefix}.attn_q.bias"), device)?;
|
|
let attention_bk = ct.tensor(reader, &format!("{prefix}.attn_k.bias"), device)?;
|
|
let attention_bv = ct.tensor(reader, &format!("{prefix}.attn_v.bias"), device)?;
|
|
|
|
let attention_wo =
|
|
ct.tensor(reader, &format!("{prefix}.attn_output.weight"), device)?;
|
|
|
|
let mlp = {
|
|
let feed_forward_w1 =
|
|
ct.tensor(reader, &format!("{prefix}.ffn_gate.weight"), device)?;
|
|
let feed_forward_w2 =
|
|
ct.tensor(reader, &format!("{prefix}.ffn_down.weight"), device)?;
|
|
let feed_forward_w3 =
|
|
ct.tensor(reader, &format!("{prefix}.ffn_up.weight"), device)?;
|
|
Mlp {
|
|
feed_forward_w1: QMatMul::from_qtensor(feed_forward_w1)?,
|
|
feed_forward_w2: QMatMul::from_qtensor(feed_forward_w2)?,
|
|
feed_forward_w3: QMatMul::from_qtensor(feed_forward_w3)?,
|
|
}
|
|
};
|
|
|
|
let attention_norm =
|
|
ct.tensor(reader, &format!("{prefix}.attn_norm.weight"), device)?;
|
|
let ffn_norm = ct.tensor(reader, &format!("{prefix}.ffn_norm.weight"), device)?;
|
|
|
|
let span_attn = tracing::span!(tracing::Level::TRACE, "attn");
|
|
let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot");
|
|
let span_mlp = tracing::span!(tracing::Level::TRACE, "attn-mlp");
|
|
|
|
layers.push(LayerWeights {
|
|
attention_wq: QMatMul::from_qtensor(attention_wq)?,
|
|
attention_wk: QMatMul::from_qtensor(attention_wk)?,
|
|
attention_wv: QMatMul::from_qtensor(attention_wv)?,
|
|
attention_bq: attention_bq.dequantize(device)?,
|
|
attention_bk: attention_bk.dequantize(device)?,
|
|
attention_bv: attention_bv.dequantize(device)?,
|
|
attention_wo: QMatMul::from_qtensor(attention_wo)?,
|
|
attention_norm: RmsNorm::from_qtensor(attention_norm, rms_norm_eps)?,
|
|
cos: cos.clone(),
|
|
sin: sin.clone(),
|
|
mlp,
|
|
ffn_norm: RmsNorm::from_qtensor(ffn_norm, rms_norm_eps)?,
|
|
n_head: head_count,
|
|
n_kv_head: head_count_kv,
|
|
head_dim,
|
|
neg_inf: neg_inf.clone(),
|
|
kv_cache: None,
|
|
span_attn,
|
|
span_rot,
|
|
span_mlp,
|
|
});
|
|
}
|
|
|
|
let span = tracing::span!(tracing::Level::TRACE, "model");
|
|
let span_output = tracing::span!(tracing::Level::TRACE, "output");
|
|
|
|
Ok(Self {
|
|
tok_embeddings: Embedding::new(tok_embeddings, embedding_length),
|
|
layers,
|
|
norm,
|
|
output,
|
|
masks: HashMap::new(),
|
|
span,
|
|
span_output,
|
|
})
|
|
}
|
|
|
|
fn mask(&mut self, t: usize, device: &Device) -> Result<Tensor> {
|
|
if let Some(mask) = self.masks.get(&t) {
|
|
Ok(mask.clone())
|
|
} else {
|
|
let mask: Vec<_> = (0..t)
|
|
.flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
|
|
.collect();
|
|
let mask = Tensor::from_slice(&mask, (t, t), device)?;
|
|
self.masks.insert(t, mask.clone());
|
|
Ok(mask)
|
|
}
|
|
}
|
|
|
|
pub fn forward(&mut self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
|
|
let (_b_sz, seq_len) = x.dims2()?;
|
|
let mask = if seq_len == 1 {
|
|
None
|
|
} else {
|
|
Some(self.mask(seq_len, x.device())?)
|
|
};
|
|
let _enter = self.span.enter();
|
|
let mut layer_in = self.tok_embeddings.forward(x)?;
|
|
for layer in self.layers.iter_mut() {
|
|
let x = layer_in;
|
|
let residual = &x;
|
|
let x = layer.attention_norm.forward(&x)?;
|
|
let attn = layer.forward_attn(&x, mask.as_ref(), index_pos)?;
|
|
let x = (attn + residual)?;
|
|
|
|
// MLP
|
|
let _enter = layer.span_mlp.enter();
|
|
let residual = &x;
|
|
let x = layer.ffn_norm.forward(&x)?;
|
|
let x = layer.mlp.forward(&x)?;
|
|
let x = (x + residual)?;
|
|
layer_in = x
|
|
}
|
|
let x = self.norm.forward(&layer_in)?;
|
|
let x = x.i((.., seq_len - 1, ..))?;
|
|
let _enter = self.span_output.enter();
|
|
self.output.forward(&x)
|
|
}
|
|
}
|