mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00

* Include topk sampling in the quantized example. * Also sample with top-k on the mistral side.
151 lines
5.6 KiB
Rust
151 lines
5.6 KiB
Rust
use candle::{DType, Error, Result, Tensor};
|
|
use rand::{distributions::Distribution, SeedableRng};
|
|
|
|
#[derive(Clone, PartialEq, Debug)]
|
|
pub enum Sampling {
|
|
ArgMax,
|
|
All { temperature: f64 },
|
|
TopK { k: usize, temperature: f64 },
|
|
TopP { p: f64, temperature: f64 },
|
|
TopKThenTopP { k: usize, p: f64, temperature: f64 },
|
|
}
|
|
|
|
pub struct LogitsProcessor {
|
|
rng: rand::rngs::StdRng,
|
|
sampling: Sampling,
|
|
}
|
|
|
|
impl LogitsProcessor {
|
|
pub fn from_sampling(seed: u64, sampling: Sampling) -> Self {
|
|
let rng = rand::rngs::StdRng::seed_from_u64(seed);
|
|
Self { rng, sampling }
|
|
}
|
|
|
|
pub fn new(seed: u64, temperature: Option<f64>, top_p: Option<f64>) -> Self {
|
|
let temperature = temperature.and_then(|v| if v < 1e-7 { None } else { Some(v) });
|
|
let sampling = match temperature {
|
|
None => Sampling::ArgMax,
|
|
Some(temperature) => match top_p {
|
|
None => Sampling::All { temperature },
|
|
Some(p) => Sampling::TopP { p, temperature },
|
|
},
|
|
};
|
|
Self::from_sampling(seed, sampling)
|
|
}
|
|
|
|
fn sample_argmax(&mut self, logits: Tensor) -> Result<u32> {
|
|
let logits_v: Vec<f32> = logits.to_vec1()?;
|
|
let next_token = logits_v
|
|
.iter()
|
|
.enumerate()
|
|
.max_by(|(_, u), (_, v)| u.total_cmp(v))
|
|
.map(|(i, _)| i as u32)
|
|
.unwrap();
|
|
Ok(next_token)
|
|
}
|
|
|
|
fn sample_multinomial(&mut self, prs: &Vec<f32>) -> Result<u32> {
|
|
let distr = rand::distributions::WeightedIndex::new(prs).map_err(Error::wrap)?;
|
|
let next_token = distr.sample(&mut self.rng) as u32;
|
|
Ok(next_token)
|
|
}
|
|
|
|
/// top-p sampling (or "nucleus sampling") samples from the smallest set of tokens that exceed
|
|
/// probability top_p. This way we never sample tokens that have very low probabilities and are
|
|
/// less likely to go "off the rails".
|
|
fn sample_topp(&mut self, prs: &mut Vec<f32>, top_p: f32) -> Result<u32> {
|
|
let mut argsort_indices = (0..prs.len()).collect::<Vec<_>>();
|
|
|
|
// Sort by descending probability.
|
|
argsort_indices.sort_by(|&i, &j| prs[j].total_cmp(&prs[i]));
|
|
|
|
// Clamp smaller probabilities to zero.
|
|
let mut cumsum = 0.;
|
|
for index in &argsort_indices {
|
|
if cumsum >= top_p {
|
|
prs[*index] = 0.0;
|
|
} else {
|
|
cumsum += prs[*index];
|
|
}
|
|
}
|
|
// Sample with clamped probabilities.
|
|
self.sample_multinomial(prs)
|
|
}
|
|
|
|
// top-k sampling samples from the k tokens with the largest probabilities.
|
|
fn sample_topk(&mut self, prs: &mut Vec<f32>, top_k: usize) -> Result<u32> {
|
|
if top_k >= prs.len() {
|
|
self.sample_multinomial(prs)
|
|
} else {
|
|
let mut argsort_indices = (0..prs.len()).collect::<Vec<_>>();
|
|
let (indices, _, _) =
|
|
argsort_indices.select_nth_unstable_by(top_k, |&i, &j| prs[j].total_cmp(&prs[i]));
|
|
let prs = indices.iter().map(|&i| prs[i]).collect::<Vec<_>>();
|
|
let index = self.sample_multinomial(&prs)?;
|
|
Ok(indices[index as usize] as u32)
|
|
}
|
|
}
|
|
|
|
// top-k sampling samples from the k tokens with the largest probabilities.
|
|
// then top-p sampling.
|
|
fn sample_topk_topp(&mut self, prs: &mut Vec<f32>, top_k: usize, top_p: f32) -> Result<u32> {
|
|
if top_k >= prs.len() {
|
|
self.sample_topp(prs, top_p)
|
|
} else {
|
|
let mut argsort_indices = (0..prs.len()).collect::<Vec<_>>();
|
|
let (indices, _, _) =
|
|
argsort_indices.select_nth_unstable_by(top_k, |&i, &j| prs[j].total_cmp(&prs[i]));
|
|
let mut prs = indices.iter().map(|&i| prs[i]).collect::<Vec<_>>();
|
|
let sum_p = prs.iter().sum::<f32>();
|
|
let index = if top_p <= 0.0 || top_p >= sum_p {
|
|
self.sample_multinomial(&prs)?
|
|
} else {
|
|
self.sample_topp(&mut prs, top_p)?
|
|
};
|
|
Ok(indices[index as usize] as u32)
|
|
}
|
|
}
|
|
|
|
pub fn sample(&mut self, logits: &Tensor) -> Result<u32> {
|
|
self.sample_f(logits, |_| {})
|
|
}
|
|
|
|
pub fn sample_f(&mut self, logits: &Tensor, f: impl FnOnce(&mut [f32])) -> Result<u32> {
|
|
let logits = logits.to_dtype(DType::F32)?;
|
|
let prs = |temperature: f64| -> Result<Vec<f32>> {
|
|
let logits = (&logits / temperature)?;
|
|
let prs = candle_nn::ops::softmax_last_dim(&logits)?;
|
|
let mut prs = prs.to_vec1()?;
|
|
f(&mut prs);
|
|
Ok(prs)
|
|
};
|
|
|
|
let next_token = match &self.sampling {
|
|
Sampling::ArgMax => self.sample_argmax(logits)?,
|
|
Sampling::All { temperature } => {
|
|
let prs = prs(*temperature)?;
|
|
self.sample_multinomial(&prs)?
|
|
}
|
|
Sampling::TopP { p, temperature } => {
|
|
let mut prs = prs(*temperature)?;
|
|
if *p <= 0.0 || *p >= 1.0 {
|
|
// simply sample from the predicted probability distribution
|
|
self.sample_multinomial(&prs)?
|
|
} else {
|
|
// top-p (nucleus) sampling, clamping the least likely tokens to zero
|
|
self.sample_topp(&mut prs, *p as f32)?
|
|
}
|
|
}
|
|
Sampling::TopK { k, temperature } => {
|
|
let mut prs = prs(*temperature)?;
|
|
self.sample_topk(&mut prs, *k)?
|
|
}
|
|
Sampling::TopKThenTopP { k, p, temperature } => {
|
|
let mut prs = prs(*temperature)?;
|
|
self.sample_topk_topp(&mut prs, *k, *p as f32)?
|
|
}
|
|
};
|
|
Ok(next_token)
|
|
}
|
|
}
|