mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 18:28:24 +00:00
193 lines
5.5 KiB
Rust
193 lines
5.5 KiB
Rust
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
#[cfg(feature = "accelerate")]
|
|
extern crate accelerate_src;
|
|
|
|
use anyhow::{Error as E, Result};
|
|
use clap::Parser;
|
|
|
|
use candle_transformers::models::mixformer::{Config, MixFormerSequentialForCausalLM as MixFormer};
|
|
use candle_transformers::models::quantized_mixformer::MixFormerSequentialForCausalLM as QMixFormer;
|
|
|
|
use candle::{DType, Device, Tensor};
|
|
use candle_nn::VarBuilder;
|
|
use candle_transformers::generation::LogitsProcessor;
|
|
use hf_hub::{api::sync::Api, Repo, RepoType};
|
|
use tokenizers::Tokenizer;
|
|
|
|
enum Model {
|
|
MixFormer(MixFormer),
|
|
Quantized(QMixFormer),
|
|
}
|
|
|
|
struct TextGeneration {
|
|
model: Model,
|
|
device: Device,
|
|
tokenizer: Tokenizer,
|
|
logits_processor: LogitsProcessor,
|
|
}
|
|
|
|
impl TextGeneration {
|
|
fn new(
|
|
model: Model,
|
|
tokenizer: Tokenizer,
|
|
seed: u64,
|
|
temp: Option<f64>,
|
|
top_p: Option<f64>,
|
|
device: &Device,
|
|
) -> Self {
|
|
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
|
|
Self {
|
|
model,
|
|
tokenizer,
|
|
logits_processor,
|
|
device: device.clone(),
|
|
}
|
|
}
|
|
|
|
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
|
|
use std::io::Write;
|
|
println!("starting the inference loop");
|
|
print!("{prompt}");
|
|
std::io::stdout().flush()?;
|
|
let mut tokens = self
|
|
.tokenizer
|
|
.encode(prompt, true)
|
|
.map_err(E::msg)?
|
|
.get_ids()
|
|
.to_vec();
|
|
|
|
let mut new_tokens = vec![];
|
|
let start_gen = std::time::Instant::now();
|
|
for index in 0..sample_len {
|
|
let context_size = if index > 0 { 1 } else { tokens.len() };
|
|
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
|
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
|
|
let logits = match &mut self.model {
|
|
Model::MixFormer(m) => m.forward(&input)?,
|
|
Model::Quantized(m) => m.forward(&input)?,
|
|
};
|
|
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
|
|
|
|
let next_token = self.logits_processor.sample(&logits)?;
|
|
tokens.push(next_token);
|
|
new_tokens.push(next_token);
|
|
let token = self.tokenizer.decode(&[next_token], true).map_err(E::msg)?;
|
|
print!("{token}");
|
|
std::io::stdout().flush()?;
|
|
}
|
|
let dt = start_gen.elapsed();
|
|
println!(
|
|
"\n{sample_len} tokens generated ({:.2} token/s)",
|
|
sample_len as f64 / dt.as_secs_f64(),
|
|
);
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[derive(Parser, Debug)]
|
|
#[command(author, version, about, long_about = None)]
|
|
struct Args {
|
|
/// Run on CPU rather than on GPU.
|
|
#[arg(long)]
|
|
cpu: bool,
|
|
|
|
/// Enable tracing (generates a trace-timestamp.json file).
|
|
#[arg(long)]
|
|
tracing: bool,
|
|
|
|
#[arg(long)]
|
|
prompt: String,
|
|
|
|
/// The temperature used to generate samples.
|
|
#[arg(long)]
|
|
temperature: Option<f64>,
|
|
|
|
/// Nucleus sampling probability cutoff.
|
|
#[arg(long)]
|
|
top_p: Option<f64>,
|
|
|
|
/// The seed to use when generating random samples.
|
|
#[arg(long, default_value_t = 299792458)]
|
|
seed: u64,
|
|
|
|
/// The length of the sample to generate (in tokens).
|
|
#[arg(long, default_value_t = 100)]
|
|
sample_len: usize,
|
|
|
|
#[arg(long, default_value = "microsoft/phi-1_5")]
|
|
model_id: String,
|
|
|
|
#[arg(long, default_value = "refs/pr/18")]
|
|
revision: String,
|
|
|
|
#[arg(long)]
|
|
weight_file: Option<String>,
|
|
|
|
#[arg(long)]
|
|
quantized: bool,
|
|
}
|
|
|
|
fn main() -> Result<()> {
|
|
use tracing_chrome::ChromeLayerBuilder;
|
|
use tracing_subscriber::prelude::*;
|
|
|
|
let args = Args::parse();
|
|
|
|
let _guard = if args.tracing {
|
|
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
|
tracing_subscriber::registry().with(chrome_layer).init();
|
|
Some(guard)
|
|
} else {
|
|
None
|
|
};
|
|
|
|
let start = std::time::Instant::now();
|
|
let api = Api::new()?;
|
|
let repo = api.repo(Repo::with_revision(
|
|
args.model_id,
|
|
RepoType::Model,
|
|
args.revision,
|
|
));
|
|
let tokenizer_filename = repo.get("tokenizer.json")?;
|
|
let filename = match args.weight_file {
|
|
Some(weight_file) => std::path::PathBuf::from(weight_file),
|
|
None => {
|
|
if args.quantized {
|
|
api.model("lmz/candle-quantized-phi".to_string())
|
|
.get("model-q4k.gguf")?
|
|
} else {
|
|
repo.get("model.safetensors")?
|
|
}
|
|
}
|
|
};
|
|
println!("retrieved the files in {:?}", start.elapsed());
|
|
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
|
|
|
let start = std::time::Instant::now();
|
|
let config = Config::v1_5();
|
|
let (model, device) = if args.quantized {
|
|
let vb = candle_transformers::quantized_var_builder::VarBuilder::from_gguf(&filename)?;
|
|
let model = QMixFormer::new(&config, vb)?;
|
|
(Model::Quantized(model), Device::Cpu)
|
|
} else {
|
|
let device = candle_examples::device(args.cpu)?;
|
|
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[filename], DType::F32, &device)? };
|
|
let model = MixFormer::new(&config, vb)?;
|
|
(Model::MixFormer(model), device)
|
|
};
|
|
println!("loaded the model in {:?}", start.elapsed());
|
|
|
|
let mut pipeline = TextGeneration::new(
|
|
model,
|
|
tokenizer,
|
|
args.seed,
|
|
args.temperature,
|
|
args.top_p,
|
|
&device,
|
|
);
|
|
pipeline.run(&args.prompt, args.sample_len)?;
|
|
Ok(())
|
|
}
|