mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 11:08:52 +00:00
521 lines
16 KiB
Rust
521 lines
16 KiB
Rust
/// Pretty printing of tensors
|
|
/// This implementation should be in line with the PyTorch version.
|
|
/// https://github.com/pytorch/pytorch/blob/7b419e8513a024e172eae767e24ec1b849976b13/torch/_tensor_str.py
|
|
use crate::{DType, Result, Tensor, WithDType};
|
|
use half::{bf16, f16};
|
|
|
|
impl Tensor {
|
|
fn fmt_dt<T: WithDType + std::fmt::Display>(
|
|
&self,
|
|
f: &mut std::fmt::Formatter,
|
|
) -> std::fmt::Result {
|
|
let device_str = match self.device().location() {
|
|
crate::DeviceLocation::Cpu => "".to_owned(),
|
|
crate::DeviceLocation::Cuda { gpu_id } => {
|
|
format!(", cuda:{}", gpu_id)
|
|
}
|
|
crate::DeviceLocation::Metal { gpu_id } => {
|
|
format!(", metal:{}", gpu_id)
|
|
}
|
|
};
|
|
|
|
write!(f, "Tensor[")?;
|
|
match self.dims() {
|
|
[] => {
|
|
if let Ok(v) = self.to_scalar::<T>() {
|
|
write!(f, "{v}")?
|
|
}
|
|
}
|
|
[s] if *s < 10 => {
|
|
if let Ok(vs) = self.to_vec1::<T>() {
|
|
for (i, v) in vs.iter().enumerate() {
|
|
if i > 0 {
|
|
write!(f, ", ")?;
|
|
}
|
|
write!(f, "{v}")?;
|
|
}
|
|
}
|
|
}
|
|
dims => {
|
|
write!(f, "dims ")?;
|
|
for (i, d) in dims.iter().enumerate() {
|
|
if i > 0 {
|
|
write!(f, ", ")?;
|
|
}
|
|
write!(f, "{d}")?;
|
|
}
|
|
}
|
|
}
|
|
write!(f, "; {}{}]", self.dtype().as_str(), device_str)
|
|
}
|
|
}
|
|
|
|
impl std::fmt::Debug for Tensor {
|
|
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
|
|
match self.dtype() {
|
|
DType::U8 => self.fmt_dt::<u8>(f),
|
|
DType::U32 => self.fmt_dt::<u32>(f),
|
|
DType::I64 => self.fmt_dt::<i64>(f),
|
|
DType::BF16 => self.fmt_dt::<bf16>(f),
|
|
DType::F16 => self.fmt_dt::<f16>(f),
|
|
DType::F32 => self.fmt_dt::<f32>(f),
|
|
DType::F64 => self.fmt_dt::<f64>(f),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Options for Tensor pretty printing
|
|
#[derive(Debug, Clone)]
|
|
pub struct PrinterOptions {
|
|
pub precision: usize,
|
|
pub threshold: usize,
|
|
pub edge_items: usize,
|
|
pub line_width: usize,
|
|
pub sci_mode: Option<bool>,
|
|
}
|
|
|
|
static PRINT_OPTS: std::sync::Mutex<PrinterOptions> =
|
|
std::sync::Mutex::new(PrinterOptions::const_default());
|
|
|
|
impl PrinterOptions {
|
|
// We cannot use the default trait as it's not const.
|
|
const fn const_default() -> Self {
|
|
Self {
|
|
precision: 4,
|
|
threshold: 1000,
|
|
edge_items: 3,
|
|
line_width: 80,
|
|
sci_mode: None,
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn print_options() -> &'static std::sync::Mutex<PrinterOptions> {
|
|
&PRINT_OPTS
|
|
}
|
|
|
|
pub fn set_print_options(options: PrinterOptions) {
|
|
*PRINT_OPTS.lock().unwrap() = options
|
|
}
|
|
|
|
pub fn set_print_options_default() {
|
|
*PRINT_OPTS.lock().unwrap() = PrinterOptions::const_default()
|
|
}
|
|
|
|
pub fn set_print_options_short() {
|
|
*PRINT_OPTS.lock().unwrap() = PrinterOptions {
|
|
precision: 2,
|
|
threshold: 1000,
|
|
edge_items: 2,
|
|
line_width: 80,
|
|
sci_mode: None,
|
|
}
|
|
}
|
|
|
|
pub fn set_print_options_full() {
|
|
*PRINT_OPTS.lock().unwrap() = PrinterOptions {
|
|
precision: 4,
|
|
threshold: usize::MAX,
|
|
edge_items: 3,
|
|
line_width: 80,
|
|
sci_mode: None,
|
|
}
|
|
}
|
|
|
|
pub fn set_line_width(line_width: usize) {
|
|
PRINT_OPTS.lock().unwrap().line_width = line_width
|
|
}
|
|
|
|
pub fn set_precision(precision: usize) {
|
|
PRINT_OPTS.lock().unwrap().precision = precision
|
|
}
|
|
|
|
pub fn set_edge_items(edge_items: usize) {
|
|
PRINT_OPTS.lock().unwrap().edge_items = edge_items
|
|
}
|
|
|
|
pub fn set_threshold(threshold: usize) {
|
|
PRINT_OPTS.lock().unwrap().threshold = threshold
|
|
}
|
|
|
|
pub fn set_sci_mode(sci_mode: Option<bool>) {
|
|
PRINT_OPTS.lock().unwrap().sci_mode = sci_mode
|
|
}
|
|
|
|
struct FmtSize {
|
|
current_size: usize,
|
|
}
|
|
|
|
impl FmtSize {
|
|
fn new() -> Self {
|
|
Self { current_size: 0 }
|
|
}
|
|
|
|
fn final_size(self) -> usize {
|
|
self.current_size
|
|
}
|
|
}
|
|
|
|
impl std::fmt::Write for FmtSize {
|
|
fn write_str(&mut self, s: &str) -> std::fmt::Result {
|
|
self.current_size += s.len();
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
trait TensorFormatter {
|
|
type Elem: WithDType;
|
|
|
|
fn fmt<T: std::fmt::Write>(&self, v: Self::Elem, max_w: usize, f: &mut T) -> std::fmt::Result;
|
|
|
|
fn max_width(&self, to_display: &Tensor) -> usize {
|
|
let mut max_width = 1;
|
|
if let Ok(vs) = to_display.flatten_all().and_then(|t| t.to_vec1()) {
|
|
for &v in vs.iter() {
|
|
let mut fmt_size = FmtSize::new();
|
|
let _res = self.fmt(v, 1, &mut fmt_size);
|
|
max_width = usize::max(max_width, fmt_size.final_size())
|
|
}
|
|
}
|
|
max_width
|
|
}
|
|
|
|
fn write_newline_indent(i: usize, f: &mut std::fmt::Formatter) -> std::fmt::Result {
|
|
writeln!(f)?;
|
|
for _ in 0..i {
|
|
write!(f, " ")?
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn fmt_tensor(
|
|
&self,
|
|
t: &Tensor,
|
|
indent: usize,
|
|
max_w: usize,
|
|
summarize: bool,
|
|
po: &PrinterOptions,
|
|
f: &mut std::fmt::Formatter,
|
|
) -> std::fmt::Result {
|
|
let dims = t.dims();
|
|
let edge_items = po.edge_items;
|
|
write!(f, "[")?;
|
|
match dims {
|
|
[] => {
|
|
if let Ok(v) = t.to_scalar::<Self::Elem>() {
|
|
self.fmt(v, max_w, f)?
|
|
}
|
|
}
|
|
[v] if summarize && *v > 2 * edge_items => {
|
|
if let Ok(vs) = t
|
|
.narrow(0, 0, edge_items)
|
|
.and_then(|t| t.to_vec1::<Self::Elem>())
|
|
{
|
|
for v in vs.into_iter() {
|
|
self.fmt(v, max_w, f)?;
|
|
write!(f, ", ")?;
|
|
}
|
|
}
|
|
write!(f, "...")?;
|
|
if let Ok(vs) = t
|
|
.narrow(0, v - edge_items, edge_items)
|
|
.and_then(|t| t.to_vec1::<Self::Elem>())
|
|
{
|
|
for v in vs.into_iter() {
|
|
write!(f, ", ")?;
|
|
self.fmt(v, max_w, f)?;
|
|
}
|
|
}
|
|
}
|
|
[_] => {
|
|
let elements_per_line = usize::max(1, po.line_width / (max_w + 2));
|
|
if let Ok(vs) = t.to_vec1::<Self::Elem>() {
|
|
for (i, v) in vs.into_iter().enumerate() {
|
|
if i > 0 {
|
|
if i % elements_per_line == 0 {
|
|
write!(f, ",")?;
|
|
Self::write_newline_indent(indent, f)?
|
|
} else {
|
|
write!(f, ", ")?;
|
|
}
|
|
}
|
|
self.fmt(v, max_w, f)?
|
|
}
|
|
}
|
|
}
|
|
_ => {
|
|
if summarize && dims[0] > 2 * edge_items {
|
|
for i in 0..edge_items {
|
|
match t.get(i) {
|
|
Ok(t) => self.fmt_tensor(&t, indent + 1, max_w, summarize, po, f)?,
|
|
Err(e) => write!(f, "{e:?}")?,
|
|
}
|
|
write!(f, ",")?;
|
|
Self::write_newline_indent(indent, f)?
|
|
}
|
|
write!(f, "...")?;
|
|
Self::write_newline_indent(indent, f)?;
|
|
for i in dims[0] - edge_items..dims[0] {
|
|
match t.get(i) {
|
|
Ok(t) => self.fmt_tensor(&t, indent + 1, max_w, summarize, po, f)?,
|
|
Err(e) => write!(f, "{e:?}")?,
|
|
}
|
|
if i + 1 != dims[0] {
|
|
write!(f, ",")?;
|
|
Self::write_newline_indent(indent, f)?
|
|
}
|
|
}
|
|
} else {
|
|
for i in 0..dims[0] {
|
|
match t.get(i) {
|
|
Ok(t) => self.fmt_tensor(&t, indent + 1, max_w, summarize, po, f)?,
|
|
Err(e) => write!(f, "{e:?}")?,
|
|
}
|
|
if i + 1 != dims[0] {
|
|
write!(f, ",")?;
|
|
Self::write_newline_indent(indent, f)?
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
write!(f, "]")?;
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
struct FloatFormatter<S: WithDType> {
|
|
int_mode: bool,
|
|
sci_mode: bool,
|
|
precision: usize,
|
|
_phantom: std::marker::PhantomData<S>,
|
|
}
|
|
|
|
impl<S> FloatFormatter<S>
|
|
where
|
|
S: WithDType + num_traits::Float + std::fmt::Display,
|
|
{
|
|
fn new(t: &Tensor, po: &PrinterOptions) -> Result<Self> {
|
|
let mut int_mode = true;
|
|
let mut sci_mode = false;
|
|
|
|
// Rather than containing all values, this should only include
|
|
// values that end up being displayed according to [threshold].
|
|
let values = t
|
|
.flatten_all()?
|
|
.to_vec1()?
|
|
.into_iter()
|
|
.filter(|v: &S| v.is_finite() && !v.is_zero())
|
|
.collect::<Vec<_>>();
|
|
if !values.is_empty() {
|
|
let mut nonzero_finite_min = S::max_value();
|
|
let mut nonzero_finite_max = S::min_value();
|
|
for &v in values.iter() {
|
|
let v = v.abs();
|
|
if v < nonzero_finite_min {
|
|
nonzero_finite_min = v
|
|
}
|
|
if v > nonzero_finite_max {
|
|
nonzero_finite_max = v
|
|
}
|
|
}
|
|
|
|
for &value in values.iter() {
|
|
if value.ceil() != value {
|
|
int_mode = false;
|
|
break;
|
|
}
|
|
}
|
|
if let Some(v1) = S::from(1000.) {
|
|
if let Some(v2) = S::from(1e8) {
|
|
if let Some(v3) = S::from(1e-4) {
|
|
sci_mode = nonzero_finite_max / nonzero_finite_min > v1
|
|
|| nonzero_finite_max > v2
|
|
|| nonzero_finite_min < v3
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
match po.sci_mode {
|
|
None => {}
|
|
Some(v) => sci_mode = v,
|
|
}
|
|
Ok(Self {
|
|
int_mode,
|
|
sci_mode,
|
|
precision: po.precision,
|
|
_phantom: std::marker::PhantomData,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl<S> TensorFormatter for FloatFormatter<S>
|
|
where
|
|
S: WithDType + num_traits::Float + std::fmt::Display + std::fmt::LowerExp,
|
|
{
|
|
type Elem = S;
|
|
|
|
fn fmt<T: std::fmt::Write>(&self, v: Self::Elem, max_w: usize, f: &mut T) -> std::fmt::Result {
|
|
if self.sci_mode {
|
|
write!(
|
|
f,
|
|
"{v:width$.prec$e}",
|
|
v = v,
|
|
width = max_w,
|
|
prec = self.precision
|
|
)
|
|
} else if self.int_mode {
|
|
if v.is_finite() {
|
|
write!(f, "{v:width$.0}.", v = v, width = max_w - 1)
|
|
} else {
|
|
write!(f, "{v:max_w$.0}")
|
|
}
|
|
} else {
|
|
write!(
|
|
f,
|
|
"{v:width$.prec$}",
|
|
v = v,
|
|
width = max_w,
|
|
prec = self.precision
|
|
)
|
|
}
|
|
}
|
|
}
|
|
|
|
struct IntFormatter<S: WithDType> {
|
|
_phantom: std::marker::PhantomData<S>,
|
|
}
|
|
|
|
impl<S: WithDType> IntFormatter<S> {
|
|
fn new() -> Self {
|
|
Self {
|
|
_phantom: std::marker::PhantomData,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<S> TensorFormatter for IntFormatter<S>
|
|
where
|
|
S: WithDType + std::fmt::Display,
|
|
{
|
|
type Elem = S;
|
|
|
|
fn fmt<T: std::fmt::Write>(&self, v: Self::Elem, max_w: usize, f: &mut T) -> std::fmt::Result {
|
|
write!(f, "{v:max_w$}")
|
|
}
|
|
}
|
|
|
|
fn get_summarized_data(t: &Tensor, edge_items: usize) -> Result<Tensor> {
|
|
let dims = t.dims();
|
|
if dims.is_empty() {
|
|
Ok(t.clone())
|
|
} else if dims.len() == 1 {
|
|
if dims[0] > 2 * edge_items {
|
|
Tensor::cat(
|
|
&[
|
|
t.narrow(0, 0, edge_items)?,
|
|
t.narrow(0, dims[0] - edge_items, edge_items)?,
|
|
],
|
|
0,
|
|
)
|
|
} else {
|
|
Ok(t.clone())
|
|
}
|
|
} else if dims[0] > 2 * edge_items {
|
|
let mut vs: Vec<_> = (0..edge_items)
|
|
.map(|i| get_summarized_data(&t.get(i)?, edge_items))
|
|
.collect::<Result<Vec<_>>>()?;
|
|
for i in (dims[0] - edge_items)..dims[0] {
|
|
vs.push(get_summarized_data(&t.get(i)?, edge_items)?)
|
|
}
|
|
Tensor::cat(&vs, 0)
|
|
} else {
|
|
let vs: Vec<_> = (0..dims[0])
|
|
.map(|i| get_summarized_data(&t.get(i)?, edge_items))
|
|
.collect::<Result<Vec<_>>>()?;
|
|
Tensor::cat(&vs, 0)
|
|
}
|
|
}
|
|
|
|
impl std::fmt::Display for Tensor {
|
|
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
|
|
let po = PRINT_OPTS.lock().unwrap();
|
|
let summarize = self.elem_count() > po.threshold;
|
|
let to_display = if summarize {
|
|
match get_summarized_data(self, po.edge_items) {
|
|
Ok(v) => v,
|
|
Err(err) => return write!(f, "{err:?}"),
|
|
}
|
|
} else {
|
|
self.clone()
|
|
};
|
|
match self.dtype() {
|
|
DType::U8 => {
|
|
let tf: IntFormatter<u8> = IntFormatter::new();
|
|
let max_w = tf.max_width(&to_display);
|
|
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
|
|
writeln!(f)?;
|
|
}
|
|
DType::U32 => {
|
|
let tf: IntFormatter<u32> = IntFormatter::new();
|
|
let max_w = tf.max_width(&to_display);
|
|
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
|
|
writeln!(f)?;
|
|
}
|
|
DType::I64 => {
|
|
let tf: IntFormatter<i64> = IntFormatter::new();
|
|
let max_w = tf.max_width(&to_display);
|
|
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
|
|
writeln!(f)?;
|
|
}
|
|
DType::BF16 => {
|
|
if let Ok(tf) = FloatFormatter::<bf16>::new(&to_display, &po) {
|
|
let max_w = tf.max_width(&to_display);
|
|
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
|
|
writeln!(f)?;
|
|
}
|
|
}
|
|
DType::F16 => {
|
|
if let Ok(tf) = FloatFormatter::<f16>::new(&to_display, &po) {
|
|
let max_w = tf.max_width(&to_display);
|
|
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
|
|
writeln!(f)?;
|
|
}
|
|
}
|
|
DType::F64 => {
|
|
if let Ok(tf) = FloatFormatter::<f64>::new(&to_display, &po) {
|
|
let max_w = tf.max_width(&to_display);
|
|
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
|
|
writeln!(f)?;
|
|
}
|
|
}
|
|
DType::F32 => {
|
|
if let Ok(tf) = FloatFormatter::<f32>::new(&to_display, &po) {
|
|
let max_w = tf.max_width(&to_display);
|
|
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
|
|
writeln!(f)?;
|
|
}
|
|
}
|
|
};
|
|
|
|
let device_str = match self.device().location() {
|
|
crate::DeviceLocation::Cpu => "".to_owned(),
|
|
crate::DeviceLocation::Cuda { gpu_id } => {
|
|
format!(", cuda:{}", gpu_id)
|
|
}
|
|
crate::DeviceLocation::Metal { gpu_id } => {
|
|
format!(", metal:{}", gpu_id)
|
|
}
|
|
};
|
|
|
|
write!(
|
|
f,
|
|
"Tensor[{:?}, {}{}]",
|
|
self.dims(),
|
|
self.dtype().as_str(),
|
|
device_str
|
|
)
|
|
}
|
|
}
|