mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00
147 lines
4.6 KiB
Rust
147 lines
4.6 KiB
Rust
use candle_core::Result;
|
|
use clap::{Parser, Subcommand, ValueEnum};
|
|
|
|
#[derive(ValueEnum, Debug, Clone)]
|
|
enum Format {
|
|
Safetensors,
|
|
Npz,
|
|
Ggml,
|
|
Pth,
|
|
Pickle,
|
|
}
|
|
|
|
impl Format {
|
|
fn infer<P: AsRef<std::path::Path>>(p: P) -> Option<Self> {
|
|
p.as_ref()
|
|
.extension()
|
|
.and_then(|e| e.to_str())
|
|
.and_then(|e| match e {
|
|
// We don't infer any format for .bin as it can be used for ggml or pytorch.
|
|
"safetensors" | "safetensor" => Some(Self::Safetensors),
|
|
"npz" => Some(Self::Npz),
|
|
"pth" | "pt" => Some(Self::Pth),
|
|
"ggml" => Some(Self::Ggml),
|
|
_ => None,
|
|
})
|
|
}
|
|
}
|
|
|
|
#[derive(Subcommand, Debug, Clone)]
|
|
enum Command {
|
|
Ls {
|
|
files: Vec<std::path::PathBuf>,
|
|
|
|
/// The file format to use, if unspecified infer from the file extension.
|
|
#[arg(long, value_enum)]
|
|
format: Option<Format>,
|
|
|
|
/// Enable verbose mode.
|
|
#[arg(short, long)]
|
|
verbose: bool,
|
|
},
|
|
}
|
|
|
|
#[derive(Parser, Debug, Clone)]
|
|
struct Args {
|
|
#[command(subcommand)]
|
|
command: Command,
|
|
}
|
|
|
|
fn run_ls(file: &std::path::PathBuf, format: Option<Format>, verbose: bool) -> Result<()> {
|
|
let format = match format {
|
|
Some(format) => format,
|
|
None => match Format::infer(file) {
|
|
Some(format) => format,
|
|
None => {
|
|
println!(
|
|
"{file:?}: cannot infer format from file extension, use the --format flag"
|
|
);
|
|
return Ok(());
|
|
}
|
|
},
|
|
};
|
|
match format {
|
|
Format::Npz => {
|
|
let tensors = candle_core::npy::NpzTensors::new(file)?;
|
|
let mut names = tensors.names();
|
|
names.sort();
|
|
for name in names {
|
|
let shape_dtype = match tensors.get_shape_and_dtype(name) {
|
|
Ok((shape, dtype)) => format!("[{shape:?}; {dtype:?}]"),
|
|
Err(err) => err.to_string(),
|
|
};
|
|
println!("{name}: {shape_dtype}")
|
|
}
|
|
}
|
|
Format::Safetensors => {
|
|
let tensors = unsafe { candle_core::safetensors::MmapedFile::new(file)? };
|
|
let tensors = tensors.deserialize()?;
|
|
let mut tensors = tensors.tensors();
|
|
tensors.sort_by(|a, b| a.0.cmp(&b.0));
|
|
for (name, view) in tensors.iter() {
|
|
let dtype = view.dtype();
|
|
let dtype = match candle_core::DType::try_from(dtype) {
|
|
Ok(dtype) => format!("{dtype:?}"),
|
|
Err(_) => format!("{dtype:?}"),
|
|
};
|
|
let shape = view.shape();
|
|
println!("{name}: [{shape:?}; {dtype}]")
|
|
}
|
|
}
|
|
Format::Pth => {
|
|
let mut tensors = candle_core::pickle::read_pth_tensor_info(file)?;
|
|
tensors.sort_by(|a, b| a.name.cmp(&b.name));
|
|
for tensor_info in tensors.iter() {
|
|
println!(
|
|
"{}: [{:?}; {:?}]",
|
|
tensor_info.name,
|
|
tensor_info.layout.shape(),
|
|
tensor_info.dtype,
|
|
);
|
|
if verbose {
|
|
println!(" {:?}", tensor_info);
|
|
}
|
|
}
|
|
}
|
|
Format::Pickle => {
|
|
let file = std::fs::File::open(file)?;
|
|
let mut reader = std::io::BufReader::new(file);
|
|
let mut stack = candle_core::pickle::Stack::empty();
|
|
stack.read_loop(&mut reader)?;
|
|
for (i, obj) in stack.stack().iter().enumerate() {
|
|
println!("{i} {obj:?}");
|
|
}
|
|
}
|
|
Format::Ggml => {
|
|
let mut file = std::fs::File::open(file)?;
|
|
let content = candle_core::quantized::ggml_file::Content::read(&mut file)?;
|
|
let mut tensors = content.tensors.into_iter().collect::<Vec<_>>();
|
|
tensors.sort_by(|a, b| a.0.cmp(&b.0));
|
|
for (name, qtensor) in tensors.iter() {
|
|
println!("{name}: [{:?}; {:?}]", qtensor.shape(), qtensor.dtype());
|
|
}
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn main() -> anyhow::Result<()> {
|
|
let args = Args::parse();
|
|
match args.command {
|
|
Command::Ls {
|
|
files,
|
|
format,
|
|
verbose,
|
|
} => {
|
|
let multiple_files = files.len() > 1;
|
|
for file in files.iter() {
|
|
if multiple_files {
|
|
println!("--- {file:?} ---");
|
|
}
|
|
run_ls(file, format.clone(), verbose)?
|
|
}
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|