mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 11:08:52 +00:00
174 lines
5.0 KiB
Rust
174 lines
5.0 KiB
Rust
//! ML framework for Rust
|
|
//!
|
|
//! ```rust
|
|
//! use candle_core::{Tensor, DType, Device};
|
|
//! # use candle_core::Error;
|
|
//! # fn main() -> Result<(), Error>{
|
|
//!
|
|
//! let a = Tensor::arange(0f32, 6f32, &Device::Cpu)?.reshape((2, 3))?;
|
|
//! let b = Tensor::arange(0f32, 12f32, &Device::Cpu)?.reshape((3, 4))?;
|
|
//! let c = a.matmul(&b)?;
|
|
//!
|
|
//! # Ok(())}
|
|
//! ```
|
|
//!
|
|
//! ## Features
|
|
//!
|
|
//! - Simple syntax (looks and feels like PyTorch)
|
|
//! - CPU and Cuda backends (and M1 support)
|
|
//! - Enable serverless (CPU) small and fast deployments
|
|
//! - Model training
|
|
//! - Distributed computing (NCCL).
|
|
//! - Models out of the box (Llama, Whisper, Falcon, ...)
|
|
//!
|
|
//! ## FAQ
|
|
//!
|
|
//! - Why Candle?
|
|
//!
|
|
//! Candle stems from the need to reduce binary size in order to *enable serverless*
|
|
//! possible by making the whole engine smaller than PyTorch very large library volume
|
|
//!
|
|
//! And simply *removing Python* from production workloads.
|
|
//! Python can really add overhead in more complex workflows and the [GIL](https://www.backblaze.com/blog/the-python-gil-past-present-and-future/) is a notorious source of headaches.
|
|
//!
|
|
//! Rust is cool, and a lot of the HF ecosystem already has Rust crates [safetensors](https://github.com/huggingface/safetensors) and [tokenizers](https://github.com/huggingface/tokenizers)
|
|
//!
|
|
//! ## Other Crates
|
|
//!
|
|
//! Candle consists of a number of crates. This crate holds core the common data structures but you may wish
|
|
//! to look at the docs for the other crates which can be found here:
|
|
//!
|
|
//! - [candle-core](https://docs.rs/candle-core/). Core Datastructures and DataTypes.
|
|
//! - [candle-nn](https://docs.rs/candle-nn/). Building blocks for Neural Nets.
|
|
//! - [candle-datasets](https://docs.rs/candle-datasets/). Rust access to commonly used Datasets like MNIST.
|
|
//! - [candle-examples](https://docs.rs/candle-examples/). Examples of Candle in Use.
|
|
//! - [candle-onnx](https://docs.rs/candle-onnx/). Loading and using ONNX models.
|
|
//! - [candle-pyo3](https://docs.rs/candle-pyo3/). Access to Candle from Python.
|
|
//! - [candle-transformers](https://docs.rs/candle-transformers/). Candle implemntation of many published transformer models.
|
|
//!
|
|
|
|
#[cfg(feature = "accelerate")]
|
|
mod accelerate;
|
|
pub mod backend;
|
|
pub mod backprop;
|
|
pub mod conv;
|
|
mod convert;
|
|
pub mod cpu;
|
|
pub mod cpu_backend;
|
|
#[cfg(feature = "cuda")]
|
|
pub mod cuda_backend;
|
|
mod custom_op;
|
|
mod device;
|
|
pub mod display;
|
|
mod dtype;
|
|
pub mod dummy_cuda_backend;
|
|
mod dummy_metal_backend;
|
|
pub mod error;
|
|
mod indexer;
|
|
pub mod layout;
|
|
#[cfg(feature = "metal")]
|
|
pub mod metal_backend;
|
|
#[cfg(feature = "mkl")]
|
|
mod mkl;
|
|
pub mod npy;
|
|
pub mod op;
|
|
pub mod pickle;
|
|
pub mod quantized;
|
|
pub mod safetensors;
|
|
pub mod scalar;
|
|
pub mod shape;
|
|
mod sort;
|
|
mod storage;
|
|
pub mod streaming;
|
|
mod strided_index;
|
|
mod tensor;
|
|
mod tensor_cat;
|
|
pub mod test_utils;
|
|
pub mod utils;
|
|
mod variable;
|
|
|
|
#[cfg(feature = "cudnn")]
|
|
pub use cuda_backend::cudnn;
|
|
|
|
pub use cpu_backend::{CpuStorage, CpuStorageRef};
|
|
pub use custom_op::{CustomOp1, CustomOp2, CustomOp3, InplaceOp1, InplaceOp2, InplaceOp3, UgIOp1};
|
|
pub use device::{Device, DeviceLocation, NdArray};
|
|
pub use dtype::{DType, DTypeParseError, FloatDType, IntDType, WithDType};
|
|
pub use error::{Context, Error, Result};
|
|
pub use indexer::{IndexOp, TensorIndexer};
|
|
pub use layout::Layout;
|
|
pub use shape::{Shape, D};
|
|
pub use storage::Storage;
|
|
pub use streaming::{StreamTensor, StreamingBinOp, StreamingModule};
|
|
pub use strided_index::{StridedBlocks, StridedIndex};
|
|
pub use tensor::{Tensor, TensorId};
|
|
pub use variable::Var;
|
|
|
|
#[cfg(feature = "cuda")]
|
|
pub use cuda_backend as cuda;
|
|
|
|
#[cfg(not(feature = "cuda"))]
|
|
pub use dummy_cuda_backend as cuda;
|
|
|
|
pub use cuda::{CudaDevice, CudaStorage};
|
|
|
|
#[cfg(feature = "metal")]
|
|
pub use metal_backend::{MetalDevice, MetalError, MetalStorage};
|
|
|
|
#[cfg(not(feature = "metal"))]
|
|
pub use dummy_metal_backend::{MetalDevice, MetalError, MetalStorage};
|
|
|
|
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
#[cfg(feature = "accelerate")]
|
|
extern crate accelerate_src;
|
|
|
|
pub trait ToUsize2 {
|
|
fn to_usize2(self) -> (usize, usize);
|
|
}
|
|
|
|
impl ToUsize2 for usize {
|
|
fn to_usize2(self) -> (usize, usize) {
|
|
(self, self)
|
|
}
|
|
}
|
|
|
|
impl ToUsize2 for (usize, usize) {
|
|
fn to_usize2(self) -> (usize, usize) {
|
|
self
|
|
}
|
|
}
|
|
|
|
/// Defining a module with forward method using a single argument.
|
|
pub trait Module {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor>;
|
|
}
|
|
|
|
impl<T: Fn(&Tensor) -> Result<Tensor>> Module for T {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
self(xs)
|
|
}
|
|
}
|
|
|
|
impl<M: Module> Module for Option<&M> {
|
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
|
match self {
|
|
None => Ok(xs.clone()),
|
|
Some(m) => m.forward(xs),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A single forward method using a single single tensor argument and a flag to
|
|
/// separate the training and evaluation behaviors.
|
|
pub trait ModuleT {
|
|
fn forward_t(&self, xs: &Tensor, train: bool) -> Result<Tensor>;
|
|
}
|
|
|
|
impl<M: Module> ModuleT for M {
|
|
fn forward_t(&self, xs: &Tensor, _train: bool) -> Result<Tensor> {
|
|
self.forward(xs)
|
|
}
|
|
}
|