Files
candle/candle-metal-kernels/src/lib.rs
Thomas Santerre fee33b45c2 Add support for strided index-select on Metal (#1909)
* initial implementation

* use correct index, but still not breaking like it should have...

* fix test
2024-03-22 07:30:02 +01:00

2041 lines
60 KiB
Rust

use metal::{
Buffer, CommandBufferRef, CompileOptions, ComputeCommandEncoderRef, ComputePipelineState,
Device, Function, FunctionConstantValues, Library, MTLDataType, MTLSize, NSUInteger,
};
use std::collections::HashMap;
use std::ffi::c_void;
use std::sync::RwLock;
const AFFINE: &str = include_str!("affine.metal");
const INDEXING: &str = include_str!("indexing.metal");
const UNARY: &str = include_str!("unary.metal");
const BINARY: &str = include_str!("binary.metal");
const TERNARY: &str = include_str!("ternary.metal");
const CAST: &str = include_str!("cast.metal");
const CONV: &str = include_str!("conv.metal");
const REDUCE: &str = include_str!("reduce.metal");
const RANDOM: &str = include_str!("random.metal");
const MFA: &[u8] = include_bytes!("libMetalFlashAttention.metallib");
const QUANTIZED: &str = include_str!("quantized.metal");
/// Most kernels apply similarly across the tensors
/// This creates a strategy that uses the maximum amount of threads per threadgroup (capped at the
/// actual total buffer length).
/// Then kernels can just do their op on their single point in the buffer.
fn linear_split(pipeline: &ComputePipelineState, length: usize) -> (MTLSize, MTLSize) {
let size = length as u64;
let width = std::cmp::min(pipeline.max_total_threads_per_threadgroup(), size);
let count = (size + width - 1) / width;
let thread_group_count = MTLSize {
width: count,
height: 1,
depth: 1,
};
let thread_group_size = MTLSize {
width,
height: 1,
depth: 1,
};
(thread_group_count, thread_group_size)
}
fn set_param<P: EncoderParam>(encoder: &ComputeCommandEncoderRef, position: u64, data: P) {
<P as EncoderParam>::set_param(encoder, position, data)
}
/// Helper functions to create the various objects on the compute command encoder
/// on a single line.
/// Prevents getting wrong some arguments number and mixing length and size in bytes.
trait EncoderParam {
fn set_param(encoder: &ComputeCommandEncoderRef, position: u64, data: Self);
}
macro_rules! primitive {
($type:ty) => {
impl EncoderParam for $type {
fn set_param(encoder: &ComputeCommandEncoderRef, position: u64, data: Self) {
encoder.set_bytes(
position,
core::mem::size_of::<$type>() as u64,
&data as *const $type as *const c_void,
);
}
}
};
}
primitive!(bool);
primitive!(usize);
primitive!(i32);
primitive!(i64);
primitive!(u32);
primitive!(u64);
primitive!(f32);
impl<T> EncoderParam for &[T] {
fn set_param(encoder: &ComputeCommandEncoderRef, position: u64, data: Self) {
encoder.set_bytes(
position,
core::mem::size_of_val(data) as u64,
data.as_ptr() as *const c_void,
);
}
}
impl EncoderParam for &Buffer {
fn set_param(encoder: &ComputeCommandEncoderRef, position: u64, data: Self) {
encoder.set_buffer(position, Some(data), 0);
}
}
impl EncoderParam for (&Buffer, usize) {
fn set_param(encoder: &ComputeCommandEncoderRef, position: u64, data: Self) {
encoder.set_buffer(position, Some(data.0), data.1 as u64);
}
}
impl EncoderParam for &mut Buffer {
fn set_param(encoder: &ComputeCommandEncoderRef, position: u64, data: Self) {
encoder.set_buffer(position, Some(data), 0);
}
}
impl EncoderParam for (&mut Buffer, usize) {
fn set_param(encoder: &ComputeCommandEncoderRef, position: u64, data: Self) {
encoder.set_buffer(position, Some(data.0), data.1 as u64);
}
}
macro_rules! set_params {
($encoder:ident, ($($param:expr),+)) => (
let mut _index = 0;
$(
set_param($encoder, _index, $param);
_index += 1;
)*
);
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum Source {
Affine,
Indexing,
Unary,
Binary,
Ternary,
Cast,
Reduce,
Mfa,
Conv,
Random,
Quantized,
}
pub mod copy2d {
pub struct Kernel(pub &'static str);
pub const FLOAT: Kernel = Kernel("copy2d_f32");
pub const HALF: Kernel = Kernel("copy2d_f16");
pub const BFLOAT: Kernel = Kernel("copy2d_bf16");
pub const I64: Kernel = Kernel("copy2d_i64");
pub const U32: Kernel = Kernel("copy2d_u32");
pub const U8: Kernel = Kernel("copy2d_u8");
}
macro_rules! ops{
($($name:ident),+) => {
pub mod contiguous {
pub struct Kernel(pub &'static str);
$(
pub mod $name {
use super::Kernel;
pub const FLOAT: Kernel = Kernel(concat!(stringify!($name), "_f32"));
pub const HALF: Kernel = Kernel(concat!(stringify!($name), "_f16"));
pub const BFLOAT: Kernel = Kernel(concat!(stringify!($name), "_bf16"));
pub const I64: Kernel = Kernel(concat!(stringify!($name), "_i64"));
pub const U32: Kernel = Kernel(concat!(stringify!($name), "_u32"));
pub const U8: Kernel = Kernel(concat!(stringify!($name), "_u8"));
}
)+
pub mod copy {
use super::Kernel;
pub const FLOAT: Kernel = Kernel("copy_f32");
pub const HALF: Kernel = Kernel("copy_f16");
pub const BFLOAT: Kernel = Kernel("copy_bf16");
pub const I64: Kernel = Kernel("copy_i64");
pub const U32: Kernel = Kernel("copy_u32");
pub const U8: Kernel = Kernel("copy_u8");
}
}
pub mod strided {
pub struct Kernel(pub &'static str);
$(
pub mod $name {
use super::Kernel;
pub const FLOAT: Kernel = Kernel(concat!(stringify!($name), "_f32_strided"));
pub const HALF: Kernel = Kernel(concat!(stringify!($name), "_f16_strided"));
pub const BFLOAT: Kernel = Kernel(concat!(stringify!($name), "_bf16_strided"));
pub const I64: Kernel = Kernel(concat!(stringify!($name), "_i64_strided"));
pub const U32: Kernel = Kernel(concat!(stringify!($name), "_u32_strided"));
pub const U8: Kernel = Kernel(concat!(stringify!($name), "_u8_strided"));
}
)+
pub mod copy {
use super::Kernel;
pub const FLOAT: Kernel = Kernel("copy_f32_strided");
pub const HALF: Kernel = Kernel("copy_f16_strided");
pub const BFLOAT: Kernel = Kernel("copy_bf16_strided");
pub const I64: Kernel = Kernel("copy_i64_strided");
pub const U32: Kernel = Kernel("copy_u32_strided");
pub const U8: Kernel = Kernel("copy_u8_strided");
}
}
};
}
pub mod unary {
ops!(
cos, sin, exp, sqr, sqrt, neg, log, gelu, abs, ceil, floor, relu, round, erf, gelu_erf,
tanh, recip, silu
);
}
pub mod binary {
ops!(add, sub, mul, div, min, max, eq, ne, le, lt, ge, gt);
}
#[derive(thiserror::Error, Debug)]
pub enum MetalKernelError {
#[error("Could not lock kernel map: {0}")]
LockError(String),
#[error("Error while loading library: {0}")]
LoadLibraryError(String),
#[error("Error while loading function: {0:?}")]
LoadFunctionError(String),
#[error("Failed to create compute function")]
FailedToCreateComputeFunction,
#[error("Failed to create pipeline")]
FailedToCreatePipeline(String),
#[error("Invalid matmul arguments {lhs_stride:?} {rhs_stride:?} {mnk:?}")]
MatMulNonContiguous {
lhs_stride: Vec<usize>,
rhs_stride: Vec<usize>,
mnk: (usize, usize, usize),
},
}
impl<T> From<std::sync::PoisonError<T>> for MetalKernelError {
fn from(e: std::sync::PoisonError<T>) -> Self {
Self::LockError(e.to_string())
}
}
type Libraries = HashMap<Source, Library>;
type Pipelines = HashMap<(&'static str, Option<ConstantValues>), ComputePipelineState>;
#[derive(Debug)]
pub struct Kernels {
libraries: RwLock<Libraries>,
pipelines: RwLock<Pipelines>,
}
impl Kernels {
pub fn new() -> Self {
let libraries = RwLock::new(Libraries::new());
let pipelines = RwLock::new(Pipelines::new());
Self {
libraries,
pipelines,
}
}
fn get_library_source(&self, source: Source) -> &'static str {
match source {
Source::Affine => AFFINE,
Source::Unary => UNARY,
Source::Binary => BINARY,
Source::Ternary => TERNARY,
Source::Indexing => INDEXING,
Source::Cast => CAST,
Source::Reduce => REDUCE,
Source::Conv => CONV,
Source::Random => RANDOM,
Source::Quantized => QUANTIZED,
Source::Mfa => panic!("Invalid lib"),
}
}
/// Load the give library from its [`source`].
/// If this has been previously loaded it will just fetch it from cache.
pub fn load_library(
&self,
device: &Device,
source: Source,
) -> Result<Library, MetalKernelError> {
let mut libraries = self.libraries.write()?;
if let Some(lib) = libraries.get(&source) {
Ok(lib.clone())
} else {
let lib = match source {
Source::Mfa => {
let source_data = MFA;
device.new_library_with_data(source_data).map_err(|e| {
MetalKernelError::LoadLibraryError(format!(
"Candle metal requires macosx > 13.0 or higher, cannot load mfa: {e}"
))
})?
}
source => {
let source_content = self.get_library_source(source);
device
.new_library_with_source(source_content, &CompileOptions::new())
.map_err(|e| MetalKernelError::LoadLibraryError(e.to_string()))?
}
};
libraries.insert(source, lib.clone());
Ok(lib)
}
}
fn load_function(
&self,
device: &Device,
source: Source,
name: &'static str,
constants: Option<FunctionConstantValues>,
) -> Result<Function, MetalKernelError> {
let func = self
.load_library(device, source)?
.get_function(name, constants)
.map_err(|e| MetalKernelError::LoadFunctionError(e.to_string()))?;
Ok(func)
}
/// Load the give pipeline
/// loads the library from source, then gets the function [`name`] from
/// that source
fn load_pipeline_with_constants(
&self,
device: &Device,
source: Source,
name: &'static str,
constants: Option<ConstantValues>,
) -> Result<ComputePipelineState, MetalKernelError> {
let mut pipelines = self.pipelines.write()?;
let key = (name, constants);
if let Some(pipeline) = pipelines.get(&key) {
Ok(pipeline.clone())
} else {
let (name, constants) = key;
let func = self.load_function(
device,
source,
name,
constants.as_ref().map(|c| c.function_constant_values()),
)?;
let pipeline = device
.new_compute_pipeline_state_with_function(&func)
.map_err(|e| MetalKernelError::FailedToCreatePipeline(e.to_string()))?;
pipelines.insert((name, constants), pipeline.clone());
Ok(pipeline)
}
}
/// Load the give pipeline
/// loads the library from source, then gets the function [`name`] from
/// that source (without constants)
pub fn load_pipeline(
&self,
device: &Device,
source: Source,
name: &'static str,
) -> Result<ComputePipelineState, MetalKernelError> {
self.load_pipeline_with_constants(device, source, name, None)
}
}
#[allow(clippy::too_many_arguments)]
pub fn call_unary_contiguous(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
kernel_name: unary::contiguous::Kernel,
length: usize,
input: &Buffer,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Unary, kernel_name.0)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(encoder, (length, input, output));
let (thread_group_count, thread_group_size) = linear_split(&pipeline, length);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_copy2d(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: copy2d::Kernel,
input: &Buffer,
output: &Buffer,
d1: usize,
d2: usize,
src_s: usize,
dst_s: usize,
src_o_in_bytes: usize,
dst_o_in_bytes: usize,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Unary, name.0)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
d1,
d2,
src_s,
dst_s,
(input, src_o_in_bytes),
(output, dst_o_in_bytes)
)
);
let width: usize = d1 * d2;
let (thread_group_count, thread_group_size) = linear_split(&pipeline, width);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_unary_strided(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: unary::strided::Kernel,
shape: &[usize],
input: &Buffer,
strides: &[usize],
offset: usize,
output: &Buffer,
output_offset: usize,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Unary, name.0)?;
let num_dims: usize = shape.len();
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
let length: usize = shape.iter().product();
set_params!(
encoder,
(
length,
num_dims,
shape,
strides,
(input, offset),
(output, output_offset)
)
);
let width: usize = shape.iter().product();
let (thread_group_count, thread_group_size) = linear_split(&pipeline, width);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_binary_contiguous(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
kernel_name: binary::contiguous::Kernel,
length: usize,
left: &Buffer,
right: &Buffer,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Binary, kernel_name.0)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(encoder, (length, left, right, output));
let (thread_group_count, thread_group_size) = linear_split(&pipeline, length);
encoder.use_resource(left, metal::MTLResourceUsage::Read);
encoder.use_resource(right, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_binary_strided(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: binary::strided::Kernel,
shape: &[usize],
left_input: &Buffer,
left_strides: &[usize],
left_offset: usize,
right_input: &Buffer,
right_strides: &[usize],
right_offset: usize,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Binary, name.0)?;
let num_dims: usize = shape.len();
let encoder = command_buffer.new_compute_command_encoder();
let width: usize = shape.iter().product();
encoder.set_compute_pipeline_state(&pipeline);
let length: usize = shape.iter().product();
set_params!(
encoder,
(
length,
num_dims,
shape,
left_strides,
right_strides,
(left_input, left_offset),
(right_input, right_offset),
output
)
);
let (thread_group_count, thread_group_size) = linear_split(&pipeline, width);
encoder.use_resource(left_input, metal::MTLResourceUsage::Read);
encoder.use_resource(right_input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_cast_contiguous(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
kernel_name: &'static str,
length: usize,
input: &Buffer,
input_offset: usize,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Cast, kernel_name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(encoder, (length, (input, input_offset), output));
let (thread_group_count, thread_group_size) = linear_split(&pipeline, length);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_cast_strided(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
kernel_name: &'static str,
shape: &[usize],
input: &Buffer,
input_strides: &[usize],
input_offset: usize,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Cast, kernel_name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
let length: usize = shape.iter().product();
set_params!(
encoder,
(
length,
shape.len(),
shape,
input_strides,
(input, input_offset),
output
)
);
let (thread_group_count, thread_group_size) = linear_split(&pipeline, length);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
pub fn call_reduce_contiguous(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
kernel_name: &'static str,
length: usize,
out_length: usize,
input: &Buffer,
input_offset: usize,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Reduce, kernel_name)?;
let elements_to_sum = length / out_length;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(length, elements_to_sum, (input, input_offset), output)
);
let thread_group_count = MTLSize {
width: out_length as u64,
height: 1,
depth: 1,
};
let width = std::cmp::min(
pipeline.max_total_threads_per_threadgroup(),
(elements_to_sum as u64 + 2 - 1) / 2,
)
.next_power_of_two();
let thread_group_size = MTLSize {
width,
height: 1,
depth: 1,
};
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
pub fn call_reduce_strided(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
kernel_name: &'static str,
shape: &[usize],
strides: &[usize],
out_length: usize,
input: &Buffer,
input_offset: usize,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let length: usize = shape.iter().product();
let pipeline = kernels.load_pipeline(device, Source::Reduce, kernel_name)?;
let elements_to_sum = length / out_length;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
shape.len(),
shape,
strides,
elements_to_sum,
(input, input_offset),
output
)
);
let thread_group_count = MTLSize {
width: out_length as u64,
height: 1,
depth: 1,
};
let width = std::cmp::min(
pipeline.max_total_threads_per_threadgroup(),
elements_to_sum as u64,
)
.next_power_of_two();
let thread_group_size = MTLSize {
width,
height: 1,
depth: 1,
};
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_last_softmax(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
kernel_name: &'static str,
length: usize,
elements_to_sum: usize,
input: &Buffer,
input_offset: usize,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Reduce, kernel_name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(length, elements_to_sum, (input, input_offset), output)
);
let out_length = length / elements_to_sum;
let thread_group_count = MTLSize {
width: out_length as u64,
height: 1,
depth: 1,
};
let width = std::cmp::min(
pipeline.max_total_threads_per_threadgroup(),
elements_to_sum as u64,
)
.next_power_of_two();
let thread_group_size = MTLSize {
width,
height: 1,
depth: 1,
};
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_rms_norm(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
kernel_name: &'static str,
length: usize,
elements_to_sum: usize,
eps: f32,
input: &Buffer,
input_offset: usize,
alpha: &Buffer,
alpha_offset: usize,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Reduce, kernel_name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
length,
elements_to_sum,
(input, input_offset),
output,
(alpha, alpha_offset),
eps
)
);
let out_length = length / elements_to_sum;
let thread_group_count = MTLSize {
width: out_length as u64,
height: 1,
depth: 1,
};
let width = std::cmp::min(
pipeline.max_total_threads_per_threadgroup(),
elements_to_sum as u64,
)
.next_power_of_two();
let thread_group_size = MTLSize {
width,
height: 1,
depth: 1,
};
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_affine(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
size: usize,
input: &Buffer,
output: &Buffer,
mul: f32,
add: f32,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Affine, name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(encoder, (size, mul, add, input, output));
let (thread_group_count, thread_group_size) = linear_split(&pipeline, size);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_affine_strided(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
shape: &[usize],
input: &Buffer,
input_stride: &[usize],
input_offset: usize,
output: &Buffer,
mul: f32,
add: f32,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Affine, name)?;
let size: usize = shape.iter().product();
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
size,
shape.len(),
shape,
input_stride,
mul,
add,
(input, input_offset),
output
)
);
let (thread_group_count, thread_group_size) = linear_split(&pipeline, size);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_powf(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
size: usize,
input: &Buffer,
output: &Buffer,
mul: f32,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Affine, name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(encoder, (size, mul, input, output));
let (thread_group_count, thread_group_size) = linear_split(&pipeline, size);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_powf_strided(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
shape: &[usize],
input: &Buffer,
input_stride: &[usize],
input_offset: usize,
output: &Buffer,
mul: f32,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Affine, name)?;
let size: usize = shape.iter().product();
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
size,
shape.len(),
shape,
input_stride,
mul,
(input, input_offset),
output
)
);
let (thread_group_count, thread_group_size) = linear_split(&pipeline, size);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_elu(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
size: usize,
input: &Buffer,
output: &Buffer,
mul: f32,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Affine, name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(encoder, (size, mul, input, output));
let (thread_group_count, thread_group_size) = linear_split(&pipeline, size);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_elu_strided(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
shape: &[usize],
input: &Buffer,
input_stride: &[usize],
input_offset: usize,
output: &Buffer,
mul: f32,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Affine, name)?;
let size: usize = shape.iter().product();
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
size,
shape.len(),
shape,
input_stride,
mul,
(input, input_offset),
output
)
);
let (thread_group_count, thread_group_size) = linear_split(&pipeline, size);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
pub fn call_where_cond_strided(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
shape: &[usize],
cond: &Buffer,
(cond_stride, cond_offset): (&[usize], usize),
left: &Buffer,
(left_stride, left_offset): (&[usize], usize),
right: &Buffer,
(right_stride, right_offset): (&[usize], usize),
output: &Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Ternary, name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
let size: usize = shape.iter().product();
let rank = shape.len();
set_params!(
encoder,
(
size,
rank,
shape,
cond_stride,
left_stride,
right_stride,
(cond, cond_offset),
(left, left_offset),
(right, right_offset),
output
)
);
let (thread_group_count, thread_group_size) = linear_split(&pipeline, size);
encoder.use_resource(cond, metal::MTLResourceUsage::Read);
encoder.use_resource(left, metal::MTLResourceUsage::Read);
encoder.use_resource(right, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_index_select(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
shape: &[usize],
ids_size: usize,
dim: usize,
contiguous: bool,
src_dims: &[usize],
src_strides: &[usize],
input: &Buffer,
src_offset: usize,
ids: &Buffer,
ids_offset: usize,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let left_size: usize = shape[..dim].iter().product();
let right_size: usize = shape[dim + 1..].iter().product();
let src_dim_size = shape[dim];
let dst_el = ids_size * left_size * right_size;
let pipeline = kernels.load_pipeline(device, Source::Indexing, name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
dst_el,
left_size,
src_dim_size,
right_size,
ids_size,
contiguous,
src_dims,
src_strides,
(input, src_offset),
(ids, ids_offset),
output
)
);
let (thread_group_count, thread_group_size) = linear_split(&pipeline, dst_el);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(ids, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_gather(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
shape: &[usize],
ids_size: usize,
dim: usize,
input: &Buffer,
input_offset: usize,
ids: &Buffer,
ids_offset: usize,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let left_size: usize = shape[..dim].iter().product();
let right_size: usize = shape[dim + 1..].iter().product();
let src_dim_size = shape[dim];
let dst_el = ids_size * left_size * right_size;
let pipeline = kernels.load_pipeline(device, Source::Indexing, name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
dst_el,
left_size,
src_dim_size,
right_size,
ids_size,
(input, input_offset),
(ids, ids_offset),
output
)
);
let (thread_group_count, thread_group_size) = linear_split(&pipeline, dst_el);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(ids, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
pub fn call_scatter_add(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
src_shape: &[usize],
dst_shape: &[usize],
dim: usize,
input: &Buffer,
input_offset: usize,
ids: &Buffer,
ids_offset: usize,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let left_size: usize = src_shape[..dim].iter().product();
let right_size: usize = src_shape[dim + 1..].iter().product();
let src_dim_size = src_shape[dim];
let dst_el = left_size * right_size;
let dst_dim_size = dst_shape[dim];
let pipeline = kernels.load_pipeline(device, Source::Indexing, name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
dst_el,
left_size,
src_dim_size,
right_size,
dst_dim_size,
(input, input_offset),
(ids, ids_offset),
output
)
);
let (thread_group_count, thread_group_size) = linear_split(&pipeline, dst_el);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(ids, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
pub fn call_index_add(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
src_shape: &[usize],
dst_shape: &[usize],
ids_shape: &[usize],
dim: usize,
input: &Buffer,
input_offset: usize,
ids: &Buffer,
ids_offset: usize,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let left_size: usize = src_shape[..dim].iter().product();
let right_size: usize = src_shape[dim + 1..].iter().product();
let src_dim_size = src_shape[dim];
let dst_el = left_size * right_size;
let dst_dim_size = dst_shape[dim];
let ids_dim_size = ids_shape[0];
let pipeline = kernels.load_pipeline(device, Source::Indexing, name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
dst_el,
left_size,
src_dim_size,
right_size,
dst_dim_size,
ids_dim_size,
(input, input_offset),
(ids, ids_offset),
output
)
);
let (thread_group_count, thread_group_size) = linear_split(&pipeline, dst_el);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(ids, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[derive(Debug, PartialEq)]
pub enum Value {
USize(usize),
Bool(bool),
F32(f32),
U16(u16),
}
impl std::hash::Hash for Value {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
match self {
Value::F32(v) => v.to_bits().hash(state),
Value::USize(v) => v.hash(state),
Value::U16(v) => v.hash(state),
Value::Bool(v) => v.hash(state),
}
}
}
impl Value {
fn data_type(&self) -> MTLDataType {
match self {
Value::USize(_) => MTLDataType::UInt,
Value::F32(_) => MTLDataType::Float,
Value::U16(_) => MTLDataType::UShort,
Value::Bool(_) => MTLDataType::Bool,
}
}
}
/// Not true, good enough for our purposes.
impl Eq for Value {}
#[derive(Debug, Eq, PartialEq, Hash)]
struct ConstantValues(Vec<(usize, Value)>);
impl ConstantValues {
pub fn new(values: Vec<(usize, Value)>) -> Self {
Self(values)
}
fn function_constant_values(&self) -> FunctionConstantValues {
let f = FunctionConstantValues::new();
for (index, value) in &self.0 {
let ty = value.data_type();
match value {
Value::USize(v) => {
f.set_constant_value_at_index(
v as *const usize as *const c_void,
ty,
*index as u64,
);
}
Value::F32(v) => {
f.set_constant_value_at_index(
v as *const f32 as *const c_void,
ty,
*index as u64,
);
}
Value::U16(v) => {
f.set_constant_value_at_index(
v as *const u16 as *const c_void,
ty,
*index as u64,
);
}
Value::Bool(v) => {
f.set_constant_value_at_index(
v as *const bool as *const c_void,
ty,
*index as u64,
);
}
}
}
f
}
}
#[allow(clippy::too_many_arguments)]
pub fn call_gemm(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
(b, m, n, k): (usize, usize, usize, usize),
lhs_stride: &[usize],
lhs_offset: usize,
lhs_buffer: &Buffer,
rhs_stride: &[usize],
rhs_offset: usize,
rhs_buffer: &Buffer,
output: &Buffer,
) -> Result<(), MetalKernelError> {
assert!(rhs_stride.len() >= 2);
assert!(lhs_stride.len() >= 2);
let rhs_m1 = rhs_stride[rhs_stride.len() - 1];
let rhs_m2 = rhs_stride[rhs_stride.len() - 2];
let lhs_m1 = lhs_stride[lhs_stride.len() - 1];
let lhs_m2 = lhs_stride[lhs_stride.len() - 2];
let a_trans = if lhs_m1 == 1 && lhs_m2 == k {
false
} else if lhs_m1 == m && lhs_m2 == 1 {
true
} else {
return Err(MetalKernelError::MatMulNonContiguous {
lhs_stride: lhs_stride.to_vec(),
rhs_stride: rhs_stride.to_vec(),
mnk: (m, n, k),
})?;
};
let b_trans = if rhs_m1 == 1 && rhs_m2 == n {
false
} else if rhs_m1 == k && rhs_m2 == 1 {
true
} else {
return Err(MetalKernelError::MatMulNonContiguous {
lhs_stride: lhs_stride.to_vec(),
rhs_stride: rhs_stride.to_vec(),
mnk: (m, n, k),
})?;
};
let d_trans = false;
let alpha = 1.0f32;
let beta = 0.0f32;
let batched = b > 1;
let fused_activation = false;
let fused_bias = false;
let (m_simd, n_simd, k_simd, m_splits, n_splits) = if m == 1 {
let m_simd = 8;
let n_simd = 8;
let k_simd = 64;
let m_splits = 1;
let n_splits = 1;
(m_simd, n_simd, k_simd, m_splits, n_splits)
} else {
let m_simd = 40;
let n_simd = 40;
let k_simd = 32;
let m_splits = 1;
let n_splits = 1;
(m_simd, n_simd, k_simd, m_splits, n_splits)
};
let constants = Some(ConstantValues::new(vec![
(0, Value::USize(m)),
(1, Value::USize(n)),
(2, Value::USize(k)),
(10, Value::Bool(a_trans)),
(11, Value::Bool(b_trans)),
(13, Value::Bool(d_trans)),
(20, Value::F32(alpha)),
(21, Value::F32(beta)),
(100, Value::Bool(batched)),
(101, Value::Bool(fused_activation)),
// Garbage
(102, Value::Bool(false)),
(103, Value::Bool(false)),
(113, Value::Bool(false)),
(50_000, Value::Bool(false)),
// End garbage
(200, Value::U16(m_simd)),
(201, Value::U16(n_simd)),
(202, Value::U16(k_simd)),
(210, Value::U16(m_splits)),
(211, Value::U16(n_splits)),
(50_001, Value::Bool(fused_bias)),
]));
let pipeline = kernels.load_pipeline_with_constants(device, Source::Mfa, name, constants)?;
let m_group = m_simd * m_splits;
let n_group = n_simd * n_splits;
let a_block_length = m_group * k_simd;
let b_block_length = k_simd * n_group;
let mut block_elements = a_block_length + b_block_length;
if (m % 8 != 0) && (n % 8 != 0) {
let c_block_length = m_group * n_group;
block_elements = std::cmp::max(c_block_length, block_elements)
}
if fused_bias {
if d_trans {
block_elements = std::cmp::max(block_elements, m_group);
} else {
block_elements = std::cmp::max(block_elements, n_group);
}
}
let bytes = match name {
"sgemm" => 4,
"hgemm" => 2,
other => {
return Err(MetalKernelError::LoadLibraryError(format!(
"{other} is not a valid kernel for gemm"
)));
}
};
let block_bytes = block_elements * bytes;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
encoder.set_threadgroup_memory_length(0, block_bytes.into());
encoder.set_buffer(0, Some(lhs_buffer), lhs_offset as NSUInteger);
encoder.set_buffer(1, Some(rhs_buffer), rhs_offset as NSUInteger);
encoder.set_buffer(2, Some(output), 0);
// TODO Tensor D
let grid_z = b;
if batched {
let byte_stride_a: usize = lhs_stride[lhs_stride.len() - 3] * bytes as usize;
let byte_stride_b: usize = rhs_stride[rhs_stride.len() - 3] * bytes as usize;
let byte_stride_c = m * n * bytes as usize;
// TODO byte_stride_d
let byte_stride_d = 0;
let buffer: Vec<u64> = vec![
byte_stride_a as _,
byte_stride_b as _,
byte_stride_c as _,
byte_stride_d as _,
];
encoder.set_bytes(
10,
(buffer.len() * core::mem::size_of::<u64>()) as NSUInteger,
buffer.as_ptr() as *const NSUInteger as *const c_void,
);
}
let grid_size = MTLSize {
width: divide(n, n_group.into()),
height: divide(m, m_group.into()),
depth: grid_z as NSUInteger,
};
let group_size = MTLSize {
width: 32 * (m_splits as u64) * (n_splits as u64),
height: 1,
depth: 1,
};
encoder.use_resource(lhs_buffer, metal::MTLResourceUsage::Read);
encoder.use_resource(rhs_buffer, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(grid_size, group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_im2col1d_strided(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
shape: &[usize],
strides: &[usize],
(k_size, stride, padding, dilation): (usize, usize, usize, usize),
input: &Buffer,
input_offset: usize,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Conv, name)?;
let l_out = (shape[2] + 2 * padding - dilation * (k_size - 1) - 1) / stride + 1;
let dst_el = shape[0] * l_out * shape[1] * k_size;
let encoder = command_buffer.new_compute_command_encoder();
let (thread_group_count, thread_group_size) = linear_split(&pipeline, dst_el);
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
dst_el,
l_out,
k_size,
stride,
padding,
dilation,
shape,
strides,
(input, input_offset),
output
)
);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_im2col_strided(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
shape: &[usize],
strides: &[usize],
(h_k, w_k, stride, padding, dilation): (usize, usize, usize, usize, usize),
input: &Buffer,
input_offset: usize,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Conv, name)?;
let h = shape[2];
let w = shape[3];
let h_out = (h + 2 * padding - dilation * (h_k - 1) - 1) / stride + 1;
let w_out = (w + 2 * padding - dilation * (w_k - 1) - 1) / stride + 1;
let dst_el = shape[0] * h_out * w_out * shape[1] * h_k * w_k;
let encoder = command_buffer.new_compute_command_encoder();
let (thread_group_count, thread_group_size) = linear_split(&pipeline, dst_el);
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
dst_el,
h_out,
w_out,
h_k,
w_k,
stride,
padding,
dilation,
shape,
strides,
(input, input_offset),
output
)
);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_upsample_nearest_2d(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
shape: &[usize],
strides: &[usize],
out_w: usize,
out_h: usize,
input: &Buffer,
input_offset: usize,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Conv, name)?;
let dst_el = out_w * out_h * shape[0] * shape[1];
let scale_w = shape[2] as f32 / out_w as f32;
let scale_h = shape[3] as f32 / out_h as f32;
let (thread_group_count, thread_group_size) = linear_split(&pipeline, dst_el);
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
out_w,
out_h,
scale_w,
scale_h,
shape,
strides,
(input, input_offset),
output
)
);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_random_uniform(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
min: f32,
max: f32,
length: usize,
seed: &Buffer,
buffer: &Buffer,
) -> Result<(), MetalKernelError> {
if min >= max {
return Err(MetalKernelError::LoadLibraryError(
"min must be less than max".to_string(),
));
}
let pipeline = kernels.load_pipeline(device, Source::Random, name)?;
let encoder = command_buffer.new_compute_command_encoder();
let odd = (length % 2 != 0) as usize;
let (thread_group_count, thread_group_size) = linear_split(&pipeline, length / 2 + odd);
encoder.set_compute_pipeline_state(&pipeline);
set_params!(encoder, (length, min, max, seed, buffer));
encoder.use_resource(
seed,
metal::MTLResourceUsage::Read | metal::MTLResourceUsage::Write,
);
encoder.use_resource(buffer, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_random_normal(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
mean: f32,
stddev: f32,
length: usize,
seed: &Buffer,
buffer: &Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Random, name)?;
let encoder = command_buffer.new_compute_command_encoder();
let odd = (length % 2 != 0) as usize;
let (thread_group_count, thread_group_size) = linear_split(&pipeline, length / 2 + odd);
encoder.set_compute_pipeline_state(&pipeline);
set_params!(encoder, (length, mean, stddev, seed, buffer));
encoder.use_resource(
seed,
metal::MTLResourceUsage::Read | metal::MTLResourceUsage::Write,
);
encoder.use_resource(buffer, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[derive(Debug, Clone, Copy)]
pub enum GgmlDType {
Q4_0,
Q4_1,
Q5_0,
Q5_1,
Q8_0,
Q8_1,
Q2K,
Q3K,
Q4K,
Q5K,
Q6K,
Q8K,
F16,
F32,
}
pub fn call_quantized_matmul_t(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
dtype: GgmlDType,
(b, m, n, k): (usize, usize, usize, usize),
lhs: &Buffer,
lhs_offset: usize,
rhs: &Buffer,
output: &Buffer,
) -> Result<(), MetalKernelError> {
// Everything is in reverse
let ne00 = k as i64;
let ne01 = n as i64;
let ne02 = b as i64;
let ne03 = 1 as i64;
let nb00 = 0i64;
let nb01 = 0 as i64;
let nb02 = 0 as i64;
let ne10 = k as i64;
let ne11 = m as i64;
let ne12 = b as i64;
let ne13 = 1 as i64;
let nb10 = 0i64;
let nb11 = 0i64;
let nb12 = 0i64;
let ne0 = n as i64;
let ne1 = m as i64;
let r2: u32 = (ne12 / ne02) as u32;
let r3: u32 = (ne13 / ne03) as u32;
let (nth0, nth1, align) = match dtype {
GgmlDType::Q4_0
| GgmlDType::Q4_1
| GgmlDType::Q5_0
| GgmlDType::Q5_1
| GgmlDType::Q8_0
| GgmlDType::Q8_1 => {
let nth0 = 8;
let nth1 = 8;
let align = 8;
(nth0, nth1, align)
}
GgmlDType::Q2K => {
// Fixing a bug in Metal for GGML
let nth0 = 4;
let nth1 = 8;
let align = 4;
(nth0, nth1, align)
}
GgmlDType::Q4K => {
let nth0 = 4;
let nth1 = 8;
let align = 4;
(nth0, nth1, align)
}
GgmlDType::Q3K | GgmlDType::Q5K => {
let nth0 = 2;
let nth1 = 32;
let align = 4;
(nth0, nth1, align)
}
GgmlDType::Q6K => {
let nth0 = 2;
let nth1 = 32;
let align = 2;
(nth0, nth1, align)
}
GgmlDType::F16 | GgmlDType::Q8K => {
// Original implem uses rows
let nth0 = 32;
let nth1 = 1;
let align = 8;
(nth0, nth1, align)
}
GgmlDType::F32 => {
let nth0 = 32;
let nth1 = 1;
let align = 8;
(nth0, nth1, align)
}
};
let thread_groups_count = MTLSize {
width: divide(ne01 as usize, align),
height: ne11 as u64,
depth: (ne12 * ne13) as u64,
};
let threads_per_threadgroup = MTLSize {
width: nth0,
height: nth1,
depth: 1,
};
let name = match dtype {
GgmlDType::Q4_0 => "kernel_mul_mv_q4_0_f32",
GgmlDType::Q4_1 => "kernel_mul_mv_q4_1_f32",
GgmlDType::Q5_0 => "kernel_mul_mv_q5_0_f32",
GgmlDType::Q5_1 => "kernel_mul_mv_q5_1_f32",
GgmlDType::Q8_0 => "kernel_mul_mv_q8_0_f32",
GgmlDType::Q8_1 => "kernel_mul_mv_q8_1_f32",
GgmlDType::Q2K => "kernel_mul_mv_q2_K_f32",
GgmlDType::Q3K => "kernel_mul_mv_q3_K_f32",
GgmlDType::Q4K => "kernel_mul_mv_q4_K_f32",
GgmlDType::Q5K => "kernel_mul_mv_q5_K_f32",
GgmlDType::Q6K => "kernel_mul_mv_q6_K_f32",
GgmlDType::Q8K => "kernel_mul_mv_q8_K_f32",
GgmlDType::F16 => "kernel_mul_mv_f16_f32",
GgmlDType::F32 => "kernel_mul_mv_f32_f32",
};
let pipeline = kernels.load_pipeline(device, Source::Quantized, name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
rhs,
(lhs, lhs_offset),
output,
ne00,
ne01,
ne02,
nb00,
nb01,
nb02,
ne10,
ne11,
ne12,
nb10,
nb11,
nb12,
ne0,
ne1,
r2,
r3
)
);
encoder.set_threadgroup_memory_length(0, 8192);
encoder.use_resource(lhs, metal::MTLResourceUsage::Read);
encoder.use_resource(rhs, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_groups_count, threads_per_threadgroup);
encoder.end_encoding();
Ok(())
}
fn divide(m: usize, b: usize) -> NSUInteger {
((m + b - 1) / b) as NSUInteger
}
#[allow(clippy::too_many_arguments)]
pub fn call_pool2d(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
shape: &[usize],
strides: &[usize],
out_w: usize,
out_h: usize,
w_k: usize,
h_k: usize,
w_stride: usize,
h_stride: usize,
input: &Buffer,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let dst_el = out_w * out_h * shape[0] * shape[1];
let pipeline: ComputePipelineState = kernels.load_pipeline(device, Source::Conv, name)?;
let (thread_group_count, thread_group_size) = linear_split(&pipeline, dst_el);
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(w_k, h_k, w_stride, h_stride, shape, strides, input, output)
);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_conv_transpose1d(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
dilation: usize,
stride: usize,
padding: usize,
out_padding: usize,
c_out: usize,
l_out: usize,
b_size: usize,
src_shape: &[usize],
src_strides: &[usize],
kernel_shape: &[usize],
kernel_strides: &[usize],
input: &Buffer,
input_offset: usize,
kernel: &Buffer,
kernel_offset: usize,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let dst_el = c_out * l_out * b_size;
let pipeline: ComputePipelineState = kernels.load_pipeline(device, Source::Conv, name)?;
let (thread_group_count, thread_group_size) = linear_split(&pipeline, dst_el);
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
l_out,
stride,
padding,
out_padding,
dilation,
src_shape,
src_strides,
kernel_shape,
kernel_strides,
(input, input_offset),
(kernel, kernel_offset),
output
)
);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(kernel, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
pub struct CallConvTranspose2dCfg<'a> {
pub dilation: usize,
pub stride: usize,
pub padding: usize,
pub output_padding: usize,
pub c_out: usize,
pub out_w: usize,
pub out_h: usize,
pub b_size: usize,
pub input_dims: &'a [usize],
pub input_stride: &'a [usize],
pub kernel_dims: &'a [usize],
pub kernel_stride: &'a [usize],
pub input_offset: usize,
pub kernel_offset: usize,
}
pub fn call_conv_transpose2d(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
cfg: CallConvTranspose2dCfg,
input: &Buffer,
kernel: &Buffer,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let dst_el = cfg.c_out * cfg.out_w * cfg.out_h * cfg.b_size;
let pipeline: ComputePipelineState = kernels.load_pipeline(device, Source::Conv, name)?;
let (thread_group_count, thread_group_size) = linear_split(&pipeline, dst_el);
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
set_params!(
encoder,
(
cfg.out_w,
cfg.out_h,
cfg.stride,
cfg.padding,
cfg.output_padding,
cfg.dilation,
cfg.input_dims,
cfg.input_stride,
cfg.kernel_dims,
cfg.kernel_stride,
(input, cfg.input_offset),
(kernel, cfg.kernel_offset),
output
)
);
encoder.use_resource(input, metal::MTLResourceUsage::Read);
encoder.use_resource(kernel, metal::MTLResourceUsage::Read);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding();
Ok(())
}
#[cfg(test)]
mod tests;